A138879
Sum of all parts of the last section of the set of partitions of n.
Original entry on oeis.org
1, 3, 5, 11, 15, 31, 39, 71, 94, 150, 196, 308, 389, 577, 750, 1056, 1353, 1881, 2380, 3230, 4092, 5412, 6821, 8935, 11150, 14386, 17934, 22834, 28281, 35735, 43982, 55066, 67551, 83821, 102365, 126267, 153397, 188001, 227645, 277305, 334383
Offset: 1
a(6)=31 because the parts of the last section of the set of partitions of 6 are (6), (3,3), (4,2), (2,2,2), (1), (1), (1), (1), (1), (1), (1), so the sum is a(6) = 6 + 3 + 3 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 31.
From _Omar E. Pol_, Aug 13 2013: (Start)
Illustration of initial terms:
. _ _ _ _ _ _
. |_ _ _ _ _ _|
. |_ _ _|_ _ _|
. |_ _ _ _|_ _|
. _ _ _ _ _ |_ _|_ _|_ _|
. |_ _ _ _ _| |_|
. _ _ _ _ |_ _ _|_ _| |_|
. |_ _ _ _| |_| |_|
. _ _ _ |_ _|_ _| |_| |_|
. _ _ |_ _ _| |_| |_| |_|
. _ |_ _| |_| |_| |_| |_|
. |_| |_| |_| |_| |_| |_|
.
. 1 3 5 11 15 31
.
(End)
On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the sum of all divisors of these terms is [1 + 2 + 3 + 6] + [1 + 2 + 4] + [1 + 3] + [1 + 2] + [1 + 2] + [1] + [1] = 31, so a(6) = 31. - _Omar E. Pol_, Jul 27 2021
Cf.
A000041,
A000203,
A002865,
A066186,
A133041,
A135010,
A138121,
A138135 -
A138138,
A138151,
A138880,
A139100,
A237593,
A336811,
A336812,
A338156,
A339278,
A340035,
A340426,
A340583,
A340793.
-
A066186 := proc(n) n*combinat[numbpart](n) ; end proc:
A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc:
seq(A138879(n),n=1..80) ; # R. J. Mathar, Jan 27 2011
-
Table[PartitionsP[n]*n - PartitionsP[n-1]*(n-1), {n, 1, 50}] (* Vaclav Kotesovec, Oct 21 2016 *)
-
for(n=1, 50, print1(numbpart(n)*n - numbpart(n - 1)*(n - 1),", ")) \\ Indranil Ghosh, Mar 19 2017
-
from sympy.ntheory import npartitions
print([npartitions(n)*n - npartitions(n - 1)*(n - 1) for n in range(1, 51)]) # Indranil Ghosh, Mar 19 2017
A138880
Sum of all parts of all partitions of n that do not contain 1 as a part.
Original entry on oeis.org
0, 2, 3, 8, 10, 24, 28, 56, 72, 120, 154, 252, 312, 476, 615, 880, 1122, 1584, 1995, 2740, 3465, 4620, 5819, 7680, 9575, 12428, 15498, 19824, 24563, 31170, 38378, 48224, 59202, 73678, 90055, 111384, 135420, 166364, 201630, 246120, 297045, 360822
Offset: 1
Cf.
A000041,
A002865,
A066186,
A133041,
A138135,
A138136,
A138137,
A138138,
A138151,
A138879,
A139100.
-
Table[Total[Flatten[Select[IntegerPartitions[n],FreeQ[#,1]&]]],{n,50}] (* Harvey P. Dale, May 24 2015 *)
a[n_] := (PartitionsP[n] - PartitionsP[n-1])*n; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 07 2015 *)
A225610
Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.
Original entry on oeis.org
1, 4, 10, 18, 33, 52, 87, 130, 202, 295, 436, 617, 887, 1226, 1709, 2327, 3173, 4244, 5691, 7505, 9907, 12917, 16822, 21690, 27947, 35685, 45506, 57625, 72836, 91500, 114760, 143143, 178235, 220908, 273268, 336670, 414041, 507298, 620455, 756398, 920470
Offset: 0
For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130.
. Diagram of regions
Partitions of 7 and partitions of 7
. _ _ _ _ _ _ _
7 15 |_ _ _ _ |
4 + 3 |_ _ _ _|_ |
5 + 2 |_ _ _ | |
3 + 2 + 2 |_ _ _|_ _|_ |
6 + 1 11 |_ _ _ | |
3 + 3 + 1 |_ _ _|_ | |
4 + 2 + 1 |_ _ | | |
2 + 2 + 2 + 1 |_ _|_ _|_ | |
5 + 1 + 1 7 |_ _ _ | | |
3 + 2 + 1 + 1 |_ _ _|_ | | |
4 + 1 + 1 + 1 5 |_ _ | | | |
2 + 2 + 1 + 1 + 1 |_ _|_ | | | |
3 + 1 + 1 + 1 + 1 3 |_ _ | | | | |
2 + 1 + 1 + 1 + 1 + 1 2 |_ | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1 1 |_|_|_|_|_|_|_|
.
. 1 2 3 4 5 6 7
.
Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. |_ _ _ |
. |_ _ _|_ |
. |_ _ | |
. _ _ _ _ _ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |
. _ _ _ _ |_ _ _|_ | |_ _ _|_ | |
. |_ _ | |_ _ | | |_ _ | | |
. _ _ _ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ _ |_ _ | |_ _ | | |_ _ | | | |_ _ | | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
.|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 10 18 33 52 87
Cf.
A000041,
A000094,
A006128,
A066186,
A093694,
A133041,
A135010,
A138137,
A139250,
A139582,
A141285,
A182377,
A186114,
A186412,
A187219,
A194446,
A194447,
A206437,
A207779,
A211978,
A220517,
A225596,
A225600.
A207779
Largest part plus the number of parts of the n-th region of the section model of partitions.
Original entry on oeis.org
2, 4, 6, 3, 9, 4, 12, 3, 6, 4, 17, 4, 7, 5, 22, 3, 6, 4, 10, 6, 5, 30, 4, 7, 5, 11, 4, 8, 6, 39, 3, 6, 4, 10, 6, 5, 15, 5, 9, 7, 6, 52, 4, 7, 5, 11, 4, 8, 6, 17, 6, 5, 11, 8, 7, 67, 3, 6, 4, 10, 6, 5, 15, 5, 9, 7, 6, 22, 4, 8, 6, 13, 5, 10, 8
Offset: 1
Written as a triangle begins:
2;
4;
6;
3, 9;
4, 12;
3, 6, 4, 17;
4, 7, 5, 22;
3, 6, 4, 10, 6, 5, 30;
4, 7, 5, 11, 4, 8, 6, 39;
3, 6, 4, 10, 6, 5, 15, 5, 9, 7, 6, 52;
Cf.
A002865,
A135010,
A182699,
A182709,
A183152,
A194436,
A194437,
A194438,
A194439,
A194447,
A206437.
A232697
Number of partitions of 2n into parts such that the largest multiplicity equals n.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 25, 35, 42, 56, 67, 89, 106, 138, 166, 211, 254, 321, 384, 479, 575, 709, 848, 1040, 1239, 1508, 1795, 2168, 2574, 3095, 3661, 4379, 5171, 6154, 7246, 8592, 10088, 11915, 13960, 16425, 19197, 22520, 26253, 30702, 35718
Offset: 0
a(1) = 1: [2].
a(2) = 2: [2,2], [2,1,1].
a(3) = 2: [2,2,2], [3,1,1,1].
a(4) = 3: [2,2,2,2], [2,2,1,1,1,1], [4,1,1,1,1].
a(5) = 3: [2,2,2,2,2], [3,2,1,1,1,1,1], [5,1,1,1,1,1].
a(6) = 5: [2,2,2,2,2,2], [2,2,2,1,1,1,1,1,1], [3,3,1,1,1,1,1,1], [4,2,1,1,1,1,1,1], [6,1,1,1,1,1,1].
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+1, min(k,
iquo(n-i*j, i+1))), j=0..min(n/i, k))))
end:
a:= n-> b(2*n, 1, n)-`if`(n=0, 0, b(2*n, 1, n-1)):
seq(a(n), n=0..60);
-
CoefficientList[x/(1-x) + (1-x)/QPochhammer[x] + O[x]^60, x] (* Jean-François Alcover, Dec 18 2016 *)
A210765
Triangle read by rows in which row n lists the number of partitions of n together with n-1 ones.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 22, 1, 1, 1, 1, 1, 1, 1, 30, 1, 1, 1, 1, 1, 1, 1, 1, 42, 1, 1, 1, 1, 1, 1, 1, 1, 1, 56, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 77, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 1, 1, 1
Offset: 1
Triangle begins:
1;
2, 1;
3, 1, 1;
5, 1, 1, 1;
7, 1, 1, 1, 1;
11, 1, 1, 1, 1, 1;
15, 1, 1, 1, 1, 1, 1;
22, 1, 1, 1, 1, 1, 1, 1;
30, 1, 1, 1, 1, 1, 1, 1, 1;
42, 1, 1, 1, 1, 1, 1, 1, 1, 1;
A194451
Partition numbers of positive integers and positive integers interleaved.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 5, 4, 7, 5, 11, 6, 15, 7, 22, 8, 30, 9, 42, 10, 56, 11, 77, 12, 101, 13, 135, 14, 176, 15, 231, 16, 297, 17, 385, 18, 490, 19, 627, 20, 792, 21, 1002, 22, 1255, 23, 1575, 24, 1958, 25, 2436, 26, 3010, 27, 3718, 28, 4565, 29, 5604, 30
Offset: 1
A225597
Triangle read by rows: T(n,k) = total number of parts of all regions of the set of partitions of n whose largest part is k.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 3, 3, 5, 1, 3, 4, 5, 7, 1, 4, 5, 7, 7, 11, 1, 4, 6, 8, 9, 11, 15, 1, 5, 7, 11, 10, 15, 15, 22, 1, 5, 9, 12, 13, 17, 19, 22, 30, 1, 6, 10, 16, 15, 22, 21, 29, 30, 42, 1, 6, 12, 18, 19, 25, 26, 32, 38, 42, 56, 1, 7, 14, 23, 22, 33, 29, 41, 42, 54, 56, 77
Offset: 1
For n = 5 and k = 3 the set of partitions of 5 contains two regions whose largest part is 3, they are third region which contains three parts [3, 1, 1] and the sixth region which contains only one part [3]. Therefore the total number of parts is 3 + 1 = 4, so T(5,3) = 4.
.
. Diagram Illustration of parts ending in column k:
. for n=5 k=1 k=2 k=3 k=4 k=5
. _ _ _ _ _ _ _ _ _ _
. |_ _ _ | _ _ _ |_ _ _ _ _|
. |_ _ _|_ | |_ _ _| _ _ _ _ |_ _|
. |_ _ | | _ _ |_ _ _ _| |_|
. |_ _|_ | | |_ _| _ _ _ |_ _| |_|
. |_ _ | | | _ _ |_ _ _| |_| |_|
. |_ | | | | _ |_ _| |_| |_| |_|
. |_|_|_|_|_| |_| |_| |_| |_| |_|
.
k = 1 2 3 4 5
.
The 5th row lists: 1 3 4 5 7
.
Triangle begins:
1;
1, 2;
1, 2, 3;
1, 3, 3, 5;
1, 3, 4, 5, 7;
1, 4, 5, 7, 7, 11;
1, 4, 6, 8, 9, 11, 15;
1, 5, 7, 11, 10, 15, 15, 22;
1, 5, 9, 12, 13, 17, 19, 22, 30;
1, 6, 10, 16, 15, 22, 21, 29, 30, 42;
1, 6, 12, 18, 19, 25, 26, 32, 38, 42, 56;
1, 7, 14, 23, 22, 33, 29, 41, 42, 54, 56, 77;
Cf.
A006128,
A133041,
A135010,
A138137,
A139582,
A141285,
A182377,
A186114,
A186412,
A187219,
A193870,
A194446,
A206437,
A207779,
A211978,
A220517,
A225598,
A225600,
A225610.
A209122
Numbers a(n) for which there exists k>1 such that the number of partitions of a(n) into k parts is k.
Original entry on oeis.org
4, 5, 6, 9, 12, 17, 22, 30, 39, 52, 67, 89, 114, 149, 191, 247, 314, 403, 509, 647, 813, 1024, 1278, 1599, 1983, 2462, 3037, 3746, 4594, 5634, 6873, 8381, 10176, 12344, 14918, 18013, 21674, 26053, 31224, 37378, 44624, 53216, 63304, 75219
Offset: 1
The partitions of a(4)=9 into k=9-4 parts are
5+1+1+1+1, 4+2+1+1+1, 3+3+1+1+1, 3+2+3+1+1, 2+2+2+2+1.
-
f[n_, k_] := Length[IntegerPartitions[n, {k}]]
t[n_] := Table[f[n, k] - k, {k, 1, n}]
b[n_] := Position[t[n], 0]
c = Flatten[Table[Last[b[n]], {n, 1, 60}]]
x = Flatten[Position[c, 1]]
y = Complement[Range[Length[x]], x]
Showing 1-9 of 9 results.
Comments