A064986 Number of partitions of n into factorial parts (0! not allowed).
1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 36, 36, 42, 42, 48, 48, 56, 56, 64, 64, 72, 72, 82, 82, 92, 92, 102, 102, 114, 114, 126, 126, 138, 138, 153, 153, 168, 168, 183, 183, 201, 201, 219, 219, 237, 237, 258, 258, 279, 279
Offset: 0
Examples
a(3) = 2 because we can write 3 = 2!+1! = 1!+1!+1!. a(10) = 9 because 10 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 = 1 + 1 + 1 + 1 + 2 + 2 + 2 = 1 + 1 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 = 1 + 1 + 1 + 1 + 6 = 1 + 1 + 2 + 6 = 2 + 2 + 6.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..250 from Reinhard Zumkeller)
- Youkow Homma, Jun Hwan Ryu and Benjamin Tong, Sequence non-squashing partitions, Slides from a talk, Jul 24 2014.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
- Index entries for sequences related to factorial numbers
Programs
-
Haskell
a064986 = p (tail a000142_list) where p _ 0 = 1 p fs'@(f:fs) m | m < f = 0 | otherwise = p fs' (m - f) + p fs m -- Reinhard Zumkeller, Dec 04 2011
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i!>n, 0, b[n-i!, i]]]; c[n_] := Module[{i}, For[i = 1, i!<2n, i++]; b[2n, i]]; a[n_] := If[OddQ[n], c[(n-1)/2], c[n/2]]; a /@ Range[0, 100] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz in A117930 *) Table[Length@IntegerPartitions[n, All, Factorial[Range[6]]], {n, 0, 63}] (* Robert Price, Jun 04 2020 *)
-
PARI
N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/prod(k=1, m-1, 1-x^k!)) \\ Seiichi Manyama, Oct 13 2019
-
PARI
N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1+sum(i=1, m-1, x^i!/prod(j=1, i, 1-x^j!))) \\ Seiichi Manyama, Oct 13 2019
Formula
G.f.: 1/Product_{i>=1} (1-x^(i!)).
G.f.: 1 + Sum_{n>0} x^(n!) / Product_{k=1..n} (1 - x^(k!)). - Seiichi Manyama, Oct 12 2019
G.f.: 1 + x/(1-x) + x^2/((1-x)*(1-x^2)) + x^6/((1-x)*(1-x^2)*(1-x^6)) + ... . - Seiichi Manyama, Oct 12 2019
Extensions
More terms from Vladeta Jovovic and Don Reble, Nov 02 2001
Comments