cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065047 Primes which when written in base 2 and prepended with a 1 produce a prime.

Original entry on oeis.org

3, 5, 13, 29, 37, 43, 71, 83, 101, 113, 163, 193, 211, 223, 257, 311, 317, 347, 479, 509, 547, 577, 613, 643, 673, 709, 787, 823, 853, 877, 883, 907, 1031, 1061, 1181, 1223, 1259, 1283, 1409, 1451, 1481, 1493, 1499, 1511, 1523, 1559, 1583, 1721, 1871, 1973
Offset: 1

Views

Author

Robert G. Wilson v, Nov 05 2001

Keywords

Comments

Primes p such that p and 2^k + p (where k is the smallest power of 2 such that 2^k > p) are primes. - Davide Rotondo, Nov 06 2024

Examples

			13 is in the sequence because 13_10 = 1101_2 and prepending a 1 gives 11101_2 = 29_10, which is a prime.
		

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; d = IntegerDigits[p, 2]; If[ PrimeQ[ FromDigits[ Prepend[d, 1], 2]], Print[p]], {n, 1, 350} ]
    Select[Prime[Range[300]],PrimeQ[FromDigits[Join[{1},IntegerDigits[#,2]],2]]&] (* Harvey P. Dale, Apr 10 2023 *)
  • PARI
    { n=0; t=log(2); for (m=1, 10^9, p=prime(m); if (isprime(p + 2^(1 + log(p)\t)), write("b065047.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 05 2009