A065109 Triangle T(n,k) of coefficients relating to Bezier curve continuity.
1, 2, -1, 4, -4, 1, 8, -12, 6, -1, 16, -32, 24, -8, 1, 32, -80, 80, -40, 10, -1, 64, -192, 240, -160, 60, -12, 1, 128, -448, 672, -560, 280, -84, 14, -1, 256, -1024, 1792, -1792, 1120, -448, 112, -16, 1, 512, -2304, 4608, -5376, 4032, -2016, 672, -144, 18, -1, 1024, -5120, 11520, -15360, 13440
Offset: 0
Examples
For C-2 continuity between P and Q we require Q_0 = P_n; Q_1 = 2P_n - P_n-1; Q_2 = 4P_n - 4P_n-1 + P_n-2. Triangle begins: 1; 2, -1; 4, -4, 1; 8, -12, 6, -1; 16, -32, 24, -8, 1; 32, -80, 80, -40, 10, -1; 64, -192, 240, -160, 60, -12, 1; 128, -448, 672, -560, 280, -84, 14, -1; 256, -1024, 1792, -1792, 1120, -448, 112, -16, 1; 512, -2304, 4608, -5376, 4032, -2016, 672, -144, 18, -1; 1024, -5120, 11520, -15360, 13440, -8064, 3360, -960, 180, -20, 1; 2048, -11264, 28160, -42240, 42240, -29568, 14784, -5280, 1320, -220, 22, -1;
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- Peter J. Taylor, Conditions for C-a Continuity of Bezier Curves
Programs
-
Haskell
a065109 n k = a065109_tabl !! n !! k a065109_row n = a065109_tabl !! n a065109_tabl = iterate (\row -> zipWith (-) (map (* 2) row ++ [0]) ([0] ++ row)) [1] -- Reinhard Zumkeller, Apr 25 2013
-
Magma
/* As triangle: */ [[(-1)^k*2^(n-k)*Binomial(n, k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Apr 26 2015
-
Maple
seq(seq((-1)^k * 2^(n-k) * binomial(n, k), k= 0 .. n), n = 0 .. 12); # Robert Israel, Apr 26 2015
-
Mathematica
t[n_, m_, k_] = (-1)^m*Multinomial[n - m - k, m, k]; Table[Table[Sum[t[n, m, k], {k, 0, n}], {m, 0, n}], {n, 0, 11}]; Flatten[%] (* Roger L. Bagula, Sep 12 2008 *) Flatten[Table[(-1)^k 2^(n-k) Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 13 2013 *)
Formula
T(n, k) = (-1)^k * 2^(n-k) * binomial(n, k).
Sum_{i=0..n} binomial(n,i) * (-1)^i * T(i,r) = (-1)^(n-r) * binomial(n,r).
For n > 0, T(n, k) = 2*T(n-1, k) - T(n-1, k-1). - Gerald McGarvey, May 29 2005
p(n,m,k) = (-1)^m*multinomial(n - m - k, m, k); t(n,m) = Sum_{k=0..n} (-1)^m*multinomial(n - m - k, m, k). - Roger L. Bagula, Sep 12 2008
Sum_{k=0..n} T(n,k)*x^k = (2-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: Sum_{n>=0} (2-x)^n * x^(n*(n+1)/2). - Robert Israel, Apr 26 2015
G.f.: 1/(1-2*x+x*y). - R. J. Mathar, Aug 11 2015
Comments