cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065109 Triangle T(n,k) of coefficients relating to Bezier curve continuity.

Original entry on oeis.org

1, 2, -1, 4, -4, 1, 8, -12, 6, -1, 16, -32, 24, -8, 1, 32, -80, 80, -40, 10, -1, 64, -192, 240, -160, 60, -12, 1, 128, -448, 672, -560, 280, -84, 14, -1, 256, -1024, 1792, -1792, 1120, -448, 112, -16, 1, 512, -2304, 4608, -5376, 4032, -2016, 672, -144, 18, -1, 1024, -5120, 11520, -15360, 13440
Offset: 0

Views

Author

Peter J. Taylor, Nov 12 2001

Keywords

Comments

Row sums are 1, antidiagonal sums are the natural numbers. - Gerald McGarvey, May 29 2005
Row sums = 1. - Roger L. Bagula, Sep 12 2008
Riordan array (1/(1-2x), -x/(1-2x)). - Philippe Deléham, Nov 27 2009
Triangle T(n,k), read by rows, given by [2,0,0,0,0,0,0,0,...] DELTA [ -1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009

Examples

			For C-2 continuity between P and Q we require Q_0 = P_n; Q_1 = 2P_n - P_n-1; Q_2 = 4P_n - 4P_n-1 + P_n-2.
Triangle begins:
     1;
     2,     -1;
     4,     -4,     1;
     8,    -12,     6,     -1;
    16,    -32,    24,     -8,     1;
    32,    -80,    80,    -40,    10,     -1;
    64,   -192,   240,   -160,    60,    -12,     1;
   128,   -448,   672,   -560,   280,    -84,    14,    -1;
   256,  -1024,  1792,  -1792,  1120,   -448,   112,   -16,    1;
   512,  -2304,  4608,  -5376,  4032,  -2016,   672,  -144,   18,   -1;
  1024,  -5120, 11520, -15360, 13440,  -8064,  3360,  -960,  180,  -20,  1;
  2048, -11264, 28160, -42240, 42240, -29568, 14784, -5280, 1320, -220, 22, -1;
		

Crossrefs

Cf. A038207, A013609. Apart from signs, same as A038207.

Programs

  • Haskell
    a065109 n k = a065109_tabl !! n !! k
    a065109_row n = a065109_tabl !! n
    a065109_tabl = iterate
       (\row -> zipWith (-) (map (* 2) row ++ [0]) ([0] ++ row)) [1]
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Magma
    /* As triangle: */  [[(-1)^k*2^(n-k)*Binomial(n, k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Apr 26 2015
  • Maple
    seq(seq((-1)^k * 2^(n-k) * binomial(n, k), k= 0 .. n), n = 0 .. 12); # Robert Israel, Apr 26 2015
  • Mathematica
    t[n_, m_, k_] = (-1)^m*Multinomial[n - m - k, m, k]; Table[Table[Sum[t[n, m, k], {k, 0, n}], {m, 0, n}], {n, 0, 11}]; Flatten[%] (* Roger L. Bagula, Sep 12 2008 *)
    Flatten[Table[(-1)^k 2^(n-k) Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 13 2013 *)

Formula

T(n, k) = (-1)^k * 2^(n-k) * binomial(n, k).
Sum_{i=0..n} binomial(n,i) * (-1)^i * T(i,r) = (-1)^(n-r) * binomial(n,r).
For n > 0, T(n, k) = 2*T(n-1, k) - T(n-1, k-1). - Gerald McGarvey, May 29 2005
p(n,m,k) = (-1)^m*multinomial(n - m - k, m, k); t(n,m) = Sum_{k=0..n} (-1)^m*multinomial(n - m - k, m, k). - Roger L. Bagula, Sep 12 2008
Sum_{k=0..n} T(n,k)*A000108(k) = A001405(n). - Philippe Deléham, Nov 27 2009
Sum_{k=0..n} T(n,k)*x^k = (2-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: Sum_{n>=0} (2-x)^n * x^(n*(n+1)/2). - Robert Israel, Apr 26 2015
G.f.: 1/(1-2*x+x*y). - R. J. Mathar, Aug 11 2015