A065165 Permutation t->t+2 of Z, folded to N.
4, 6, 2, 8, 1, 10, 3, 12, 5, 14, 7, 16, 9, 18, 11, 20, 13, 22, 15, 24, 17, 26, 19, 28, 21, 30, 23, 32, 25, 34, 27, 36, 29, 38, 31, 40, 33, 42, 35, 44, 37, 46, 39, 48, 41, 50, 43, 52, 45, 54, 47, 56, 49, 58, 51, 60, 53, 62, 55, 64, 57, 66, 59, 68, 61, 70, 63, 72, 65, 74, 67, 76
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507-519.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Mathematica
CoefficientList[Series[(3 x^5 - 3 x^4 + 4 x^3 - 8 x^2 + 2 x + 4)/((x - 1)^2 (x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 08 2014 *) LinearRecurrence[{1,1,-1},{4,6,2,8,1,10},80] (* Harvey P. Dale, May 09 2018 *)
-
PARI
Vec(x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Mar 07 2014
Formula
Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+2).
G.f.: x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4) / ((x-1)^2*(x+1)). - Colin Barker, Feb 18 2013
a(n) = 4*(-1)^n+n for n>3. a(n) = a(n-1)+a(n-2)-a(n-3) for n>6. - Colin Barker, Mar 07 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 3/2. - Amiram Eldar, Aug 08 2023
Comments