cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065171 Permutation of Z, folded to N, corresponding to the site swap pattern ...26120123456... which ascends infinitely after t=0.

Original entry on oeis.org

1, 4, 2, 8, 3, 12, 6, 16, 5, 20, 10, 24, 7, 28, 14, 32, 9, 36, 18, 40, 11, 44, 22, 48, 13, 52, 26, 56, 15, 60, 30, 64, 17, 68, 34, 72, 19, 76, 38, 80, 21, 84, 42, 88, 23, 92, 46, 96, 25, 100, 50, 104, 27, 108, 54, 112, 29, 116, 58, 120, 31, 124, 62, 128, 33, 132, 66, 136, 35
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

This permutation consists of one fixed point (at 0, mapped here to 1) and an infinite number of infinite cycles.

Examples

			G.f. = x + 4*x^2 + 2*x^3 + 8*x^4 + 3*x^5 + 12*x^6 + 6*x^7 + 16*x^8 + ...
		

Crossrefs

Inverse permutation: A065172. A065173 gives the deltas p(t)-t, i.e., the associated site swap sequence. Cf. also A065167, A065174, A065260.

Programs

  • Maple
    [seq(Z2N(InfRisingSS(N2Z(n))), n=1..120)]; InfRisingSS := z -> `if`((z < 0),`if`((0 = (z mod 2)),z/2,-z),2*z);
    N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
  • PARI
    Vec(x*(2*x^6+4*x^5+x^4+8*x^3+2*x^2+4*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Oct 29 2016
    
  • PARI
    {a(n) = if( n%2, n\2+1, n*2)}; /* Michael Somos, Nov 06 2016 */

Formula

a(2*k+2) = 4*k+4, a(4*k+1) = 2*k+1, a(4*k+3) = 4*k+2. - Ralf Stephan, Jun 10 2005
G.f.: x*(2*x^6+4*x^5+x^4+8*x^3+2*x^2+4*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Feb 18 2013
a(n) = 2*a(n-4)-a(n-8) for n>8. - Colin Barker, Oct 29 2016
a(n) = (11*n-1+(5*n+1)*(-1)^n+(n-3)*(1-(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))/8. - Luce ETIENNE, Oct 20 2016