A065173 Site swap sequence that rises infinitely after t=0. The associated delta sequence p(t)-t for the permutation of Z: A065171.
0, 1, 2, 2, 1, 3, 6, 4, 2, 5, 10, 6, 3, 7, 14, 8, 4, 9, 18, 10, 5, 11, 22, 12, 6, 13, 26, 14, 7, 15, 30, 16, 8, 17, 34, 18, 9, 19, 38, 20, 10, 21, 42, 22, 11, 23, 46, 24, 12, 25, 50, 26, 13, 27, 54, 28, 14, 29, 58, 30, 15, 31, 62, 32, 16, 33, 66, 34, 17, 35, 70, 36, 18, 37, 74, 38
Offset: 1
Examples
G.f. = x^2 + 2*x^3 + 2*x^4 + x^5 + 3*x^6 + 6*x^7 + 4*x^8 + 2*x^9 + ...
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Crossrefs
The other bisection gives A000027.
Programs
-
Maple
[seq((InfRisingSS(N2Z(n))-N2Z(n)), n=1..120)]; N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
-
PARI
concat(0, Vec(x^2*(2*x^5+x^4+x^3+2*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100))) \\ Colin Barker, Oct 29 2016
-
PARI
{a(n) = if( n%2==0, n/2, n%4==1, n\4, n-1)}; /* Michael Somos, Nov 06 2016 */
Formula
a(2*k+2) = k+1, a(4*k+1) = k, a(4*k+3) = 4*k+2. - Ralf Stephan, Jun 10 2005
G.f.: x^2*(2*x^5+x^4+x^3+2*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Feb 18 2013
a(n) = 2*a(n-4)-a(n-8) for n>8. - Colin Barker, Oct 29 2016
a(n) = (9*n-5-(n-5)*(-1)^n-3*(n-1)*(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/16. - Luce ETIENNE, Oct 29 2016
Comments