cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065173 Site swap sequence that rises infinitely after t=0. The associated delta sequence p(t)-t for the permutation of Z: A065171.

Original entry on oeis.org

0, 1, 2, 2, 1, 3, 6, 4, 2, 5, 10, 6, 3, 7, 14, 8, 4, 9, 18, 10, 5, 11, 22, 12, 6, 13, 26, 14, 7, 15, 30, 16, 8, 17, 34, 18, 9, 19, 38, 20, 10, 21, 42, 22, 11, 23, 46, 24, 12, 25, 50, 26, 13, 27, 54, 28, 14, 29, 58, 30, 15, 31, 62, 32, 16, 33, 66, 34, 17, 35, 70, 36, 18, 37, 74, 38
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

Here the site swap pattern ..., 5, 18, 4, 14, 3, 10, 2, 6, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... that spans over the Z (zero throw is at t=0) has been folded to N by picking values at t=0, t=1, t=-1, t=2, t=-2, t=3, t=-3, etc. successively.

Examples

			G.f. = x^2 + 2*x^3 + 2*x^4 + x^5 + 3*x^6 + 6*x^7 + 4*x^8 + 2*x^9 + ...
		

Crossrefs

The other bisection gives A000027.

Programs

  • Maple
    [seq((InfRisingSS(N2Z(n))-N2Z(n)), n=1..120)]; N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
  • PARI
    concat(0, Vec(x^2*(2*x^5+x^4+x^3+2*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100))) \\ Colin Barker, Oct 29 2016
    
  • PARI
    {a(n) = if( n%2==0, n/2, n%4==1, n\4, n-1)}; /* Michael Somos, Nov 06 2016 */

Formula

a(2*k+2) = k+1, a(4*k+1) = k, a(4*k+3) = 4*k+2. - Ralf Stephan, Jun 10 2005
G.f.: x^2*(2*x^5+x^4+x^3+2*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Feb 18 2013
a(n) = 2*a(n-4)-a(n-8) for n>8. - Colin Barker, Oct 29 2016
a(n) = (9*n-5-(n-5)*(-1)^n-3*(n-1)*(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/16. - Luce ETIENNE, Oct 29 2016