A035615
Number of winning length n strings with a 2-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, 5878, 12350, 25778, 53470, 110332, 226610, 463602, 945214, 1921550, 3896642, 7885092, 15927086, 32121582, 64697726, 130166378, 261637446, 525478668, 1054673162, 2115601450, 4241716734, 8501080838, 17031744170
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Robert Price, Table of n, a(n) for n = 0..1000
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials for same game, pdf.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -8, 6, 6, -3, -2).
See
A309874 for the losing strings.
-
Join[{1}, Rest[CoefficientList[Series[x (2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/((1 - x^2)(1 - 2x)(1 - x - x^2)^2), {x, 0, 40}], x]]] (* or *) Join[{1}, LinearRecurrence[{4, -2, -8, 6, 6, -3, -2}, {0, 2, 2, 6, 12, 26, 58}, 40]] (* Harvey P. Dale, Sep 26 2012 *)
-
a(n)=if(n, ([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; -2,-3,6,6,-8,-2,4]^(n-1)*[0;2;2;6;12;26;58])[1,1], 1) \\ Charles R Greathouse IV, Jun 15 2015
A035617
Number of winning length n strings with a 3-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 3, 3, 15, 33, 105, 297, 879, 2631, 7833, 23697, 71385, 216765, 657849, 2003151, 6103743, 18624693, 56870385, 173760513, 531128349, 1623881889, 4965695331, 15185222199, 46435889601, 141985777503
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- C. Burns and B. Purcell, A note on Stephan's conjecture 77, preprint, 2005.
- C. Burns and B. Purcell, Counting the number of winning strings in the 1-dimensional same game Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials in "same game", 2001. [pdf file]
A065237
Number of winning length n strings with a 4-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 4, 4, 28, 64, 268, 844, 3100, 10876, 39244, 142432, 518380, 1906012, 7012660, 25980940, 96407356, 359260936, 1341482740, 5023006444, 18844637356
Offset: 0
11011001 is a winning string since 110{11}001->11{000}1->{111}->null.
- C. Burns and B. Purcell, A note on Stephan's conjecture 77, preprint, 2005.
- C. Burns and B. Purcell, Counting the number of winning strings in the 1-dimensional same game Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials in "same game", 2001. [pdf file]
A065243
Number of winning length n strings with a 10-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 10, 10, 190, 460, 4690, 17650, 136630, 651790, 4439890, 24056020, 154885870, 898393870, 5659321510, 34068918250, 213351643990
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A309874
a(n) = 2*n*Fibonacci(n-2) + (-1)^n + 1.
Original entry on oeis.org
2, 6, 10, 20, 38, 70, 130, 234, 422, 748, 1322, 2314, 4034, 6990, 12066, 20740, 35534, 60686, 103362, 175602, 297662, 503516, 850130, 1432850, 2411138, 4051350, 6798010, 11392244, 19068662, 31882198, 53250562, 88853754, 148125014
Offset: 2
For n=2, we have 2^2 = 4 strings of length 2 in the binary alphabet {0,1}: 00, 11, 01, and 10. Out of those strings, only 00 and 11 are winning strings in the "same game" because removing an entire run of two or more consecutive symbols gives the null string. Thus, a(2) = 2 (corresponding to the losing strings 01 and 10).
For n=3, we have 2^3 = 8 strings of length 3 in the binary alphabet {0,1}: 000, 001, 010, 100, 110, 101, 011, 111. Out of these, only the strings 000 and 111 are winning, while the rest a(2) = 6 strings are losing strings.
For n=4, we have 2^4 = 16 strings of length 4 in the binary alphabet {0,1}. From these, only 0000, 0011, 1100, 0110, 1001, and 1111 are winning strings while the rest a(4) = 16 - 6 = 10 are losing strings. (For example 0{11}0 -> 00 -> null.)
For n=8, the string 11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Robert Israel, Table of n, a(n) for n = 2..4764
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials for same game, 2001.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4,-2,2,1).
Cf.
A035615,
A035617,
A065237,
A065238,
A065239,
A065240,
A065241,
A065242,
A065243,
A323812,
A323844.
A323844
Square array T(b,m), read by descending antidiagonals: Number of winning length m strings with a b-symbol alphabet in "same game" (b >= 2, m >= 0).
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 3, 4, 0, 1, 12, 15, 4, 5, 0, 1, 26, 33, 28, 5, 6, 0, 1, 58, 105, 64, 45, 6, 7, 0, 1, 126, 297, 268, 105, 66, 7, 8, 0, 1, 278, 879, 844, 545, 156, 91, 8, 9, 0, 1, 602, 2631, 3100, 1825, 966, 217, 120, 9, 10, 0, 1
Offset: 0
Table T(b,m) (with rows b >= 2 and columns m >= 0) begins as follows:
1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, ...
1, 0, 3, 3, 15, 33, 105, 297, 879, 2631, 7833, 23697, 71385, ...
1, 0, 4, 4, 28, 64, 268, 844, 3100, 10876, 39244, 142432, 518380, ...
1, 0, 5, 5, 45, 105, 545, 1825, 7965, 30845, 128945, 527785, 2202785, ...
1, 0, 6, 6, 66, 156, 966, 3366, 16986, 70386, 332646, 1484676, 6922146, ...
1, 0, 7, 7, 91, 217, 1561, 5593, 32011, 139363, 732697, 3492265, 17899609, ...
1, 0, 8, 8, 120, 288, 2360, 8632, 55224, 249656, 1443128, 7243552, 40366040, ...
...
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Cf.
A035615 (row b=2),
A035617 (row b=3),
A065237 (row b=4),
A065238 (row b=5),
A065239 (row b=6),
A065240 (row b=7),
A065241 (row b=8),
A065242 (row b=9),
A065243 (row b=10),
A238879,
A309874 (losing strings for b=2),
A323812 (one-half of the losing strings for b=2).
A065238
Number of winning length n strings with a 5-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 5, 5, 45, 105, 545, 1825, 7965, 30845, 128945, 527785, 2202785, 9222985, 38818505, 164436125, 698347645, 2981306665, 12756855065
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065239
Number of winning length n strings with a 6-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 6, 6, 66, 156, 966, 3366, 16986, 70386, 332646, 1484676, 6922146, 31921506, 149341506, 700002366, 3299514906, 15618721956, 74169285366
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065241
Number of winning length n strings with an 8-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 8, 8, 120, 288, 2360, 8632, 55224, 249656, 1443128, 7243552, 40366040, 213357880, 1178216264, 6395922296, 35375108728, 194951335888
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065242
Number of winning length n strings with a 9-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 9, 9, 153, 369, 3393, 12609, 89145, 415161, 2614689, 13684977, 82237185, 457154577, 2704775985, 15524314425, 91659251961
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Showing 1-10 of 11 results.
Comments