A035615
Number of winning length n strings with a 2-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, 5878, 12350, 25778, 53470, 110332, 226610, 463602, 945214, 1921550, 3896642, 7885092, 15927086, 32121582, 64697726, 130166378, 261637446, 525478668, 1054673162, 2115601450, 4241716734, 8501080838, 17031744170
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Robert Price, Table of n, a(n) for n = 0..1000
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials for same game, pdf.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -8, 6, 6, -3, -2).
See
A309874 for the losing strings.
-
Join[{1}, Rest[CoefficientList[Series[x (2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/((1 - x^2)(1 - 2x)(1 - x - x^2)^2), {x, 0, 40}], x]]] (* or *) Join[{1}, LinearRecurrence[{4, -2, -8, 6, 6, -3, -2}, {0, 2, 2, 6, 12, 26, 58}, 40]] (* Harvey P. Dale, Sep 26 2012 *)
-
a(n)=if(n, ([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; -2,-3,6,6,-8,-2,4]^(n-1)*[0;2;2;6;12;26;58])[1,1], 1) \\ Charles R Greathouse IV, Jun 15 2015
A065243
Number of winning length n strings with a 10-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 10, 10, 190, 460, 4690, 17650, 136630, 651790, 4439890, 24056020, 154885870, 898393870, 5659321510, 34068918250, 213351643990
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A323844
Square array T(b,m), read by descending antidiagonals: Number of winning length m strings with a b-symbol alphabet in "same game" (b >= 2, m >= 0).
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 3, 4, 0, 1, 12, 15, 4, 5, 0, 1, 26, 33, 28, 5, 6, 0, 1, 58, 105, 64, 45, 6, 7, 0, 1, 126, 297, 268, 105, 66, 7, 8, 0, 1, 278, 879, 844, 545, 156, 91, 8, 9, 0, 1, 602, 2631, 3100, 1825, 966, 217, 120, 9, 10, 0, 1
Offset: 0
Table T(b,m) (with rows b >= 2 and columns m >= 0) begins as follows:
1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, ...
1, 0, 3, 3, 15, 33, 105, 297, 879, 2631, 7833, 23697, 71385, ...
1, 0, 4, 4, 28, 64, 268, 844, 3100, 10876, 39244, 142432, 518380, ...
1, 0, 5, 5, 45, 105, 545, 1825, 7965, 30845, 128945, 527785, 2202785, ...
1, 0, 6, 6, 66, 156, 966, 3366, 16986, 70386, 332646, 1484676, 6922146, ...
1, 0, 7, 7, 91, 217, 1561, 5593, 32011, 139363, 732697, 3492265, 17899609, ...
1, 0, 8, 8, 120, 288, 2360, 8632, 55224, 249656, 1443128, 7243552, 40366040, ...
...
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Cf.
A035615 (row b=2),
A035617 (row b=3),
A065237 (row b=4),
A065238 (row b=5),
A065239 (row b=6),
A065240 (row b=7),
A065241 (row b=8),
A065242 (row b=9),
A065243 (row b=10),
A238879,
A309874 (losing strings for b=2),
A323812 (one-half of the losing strings for b=2).
A065238
Number of winning length n strings with a 5-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 5, 5, 45, 105, 545, 1825, 7965, 30845, 128945, 527785, 2202785, 9222985, 38818505, 164436125, 698347645, 2981306665, 12756855065
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065239
Number of winning length n strings with a 6-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 6, 6, 66, 156, 966, 3366, 16986, 70386, 332646, 1484676, 6922146, 31921506, 149341506, 700002366, 3299514906, 15618721956, 74169285366
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065240
Number of winning length n strings with a 7-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 7, 7, 91, 217, 1561, 5593, 32011, 139363, 732697, 3492265, 17899609, 89014933, 455041825, 2311847083, 11875575355, 61080825757
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065241
Number of winning length n strings with an 8-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 8, 8, 120, 288, 2360, 8632, 55224, 249656, 1443128, 7243552, 40366040, 213357880, 1178216264, 6395922296, 35375108728, 194951335888
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A065242
Number of winning length n strings with a 9-symbol alphabet in "same game".
Original entry on oeis.org
1, 0, 9, 9, 153, 369, 3393, 12609, 89145, 415161, 2614689, 13684977, 82237185, 457154577, 2704775985, 15524314425, 91659251961
Offset: 0
11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
A323812
a(n) = n*Fibonacci(n-2) + ((-1)^n + 1)/2.
Original entry on oeis.org
1, 3, 5, 10, 19, 35, 65, 117, 211, 374, 661, 1157, 2017, 3495, 6033, 10370, 17767, 30343, 51681, 87801, 148831, 251758, 425065, 716425, 1205569, 2025675, 3399005, 5696122, 9534331, 15941099, 26625281, 44426877, 74062507, 123360230, 205303933, 341416205, 567353377, 942154863, 1563526761
Offset: 2
11011001 is a winning string because 110{11}001 -> 11{000}1 -> {111} -> null. Its complement, 00100110 is also a winning string because 001{00}110 -> 00{111}0 -> {000} -> null.
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials for same game, pdf.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Cf.
A035615,
A035617,
A065237,
A065238,
A065239,
A065240,
A065241,
A065242,
A065243,
A309874,
A323844.
-
Table[n Fibonacci[n-2]+((-1)^n+1)/2,{n,2,40}] (* Harvey P. Dale, Sep 17 2019 *)
A324128
a(n) = 2*n*Fibonacci(n) + (-1)^n + 1.
Original entry on oeis.org
2, 2, 6, 12, 26, 50, 98, 182, 338, 612, 1102, 1958, 3458, 6058, 10558, 18300, 31586, 54298, 93026, 158878, 270602, 459732, 779286, 1318222, 2225666, 3751250, 6312438, 10606572, 17797418, 29825282, 49922402, 83468678, 139411778, 232622148, 387796318, 645922550, 1074985346, 1787678458, 2970700846
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4,-2,2,1).
-
A324128[n_]:=Fibonacci[n]2n+(-1)^n+1;Array[A324128,50,0] (* Paolo Xausa, Nov 15 2023 *)
-
Vec(2*(1 - x - x^2 + 2*x^3 + x^4 - x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)^2) + O(x^40)) \\ Colin Barker, Mar 03 2019
Showing 1-10 of 11 results.
Comments