cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065315 Smallest prime divisor of n-th primorial + (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 13, 23, 30047, 510529, 9699713, 127, 107, 433, 1093, 375569, 13082761331670077, 941879, 32589158477190044789, 1922760350154212639131, 4129, 92388407, 5879, 40729680599249024150621323549, 1783, 4903, 10279098043, 191, 131, 109, 163, 337, 20261, 673327, 6599, 181
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, sum=37, so a(3)=37.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmin(factor(prod(i=1, n, prime(i)) + prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A020639(A002110(n) + A000040(n+1)).
a(n) = A020639(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

More terms from Michel Marcus, Aug 29 2019

A065316 Largest prime divisor of n-th primorial - (n+1)-st prime.

Original entry on oeis.org

23, 199, 2297, 30013, 12451, 9699667, 79139, 122069683, 9241993, 77184383, 211941187, 72280449346243, 73629553, 142226610221, 131076443530861861, 382046844818915214929, 1348764323657, 1822793973448088839487, 217379667530071, 3217644767340672907899084554047, 267064515689275851355624017992701
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, 4th prime=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,pmrl},pmrl=FoldList[Times,Prime[Range[nn]]];FactorInteger[ #][[-1,1]]&/@(Drop[#[[1]]-#[[2]]&/@Thread[ {pmrl,Prime[ Range[ 2,nn+1]]}],2])] (* Harvey P. Dale, Dec 30 2021 *)
  • PARI
    a(n) = vecmax(factor(prod(i=1, n, prime(i)) - prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A006530(A002110(n)-A000040(n+1)).

Extensions

More terms from Michel Marcus, Aug 29 2019

A065317 Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},FactorInteger[#][[-1,1]]&/@(Total/@Thread[{FoldList[ Times,Prime[Range[nn]]],Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

Name clarified by Felix Fröhlich, May 26 2022

A065610 Smallest number m so that n^2 + A000330(m) is also a square, i.e., n^2 + (1 + 4 + 9 + 16 + ... + m^2) = w^2 for some w.

Original entry on oeis.org

1, 47, 2, 5, 767, 16, 1727, 22, 17, 13, 18, 112, 10, 70, 8, 10799, 12287, 21, 82, 17327, 31, 15, 255, 16, 10, 13, 9, 5, 49, 40367, 43199, 117, 17, 1630, 7, 58799, 10, 65711, 34, 73007, 49, 13, 64, 29, 17, 6, 9, 30, 42, 309, 8, 124847, 17, 31, 139967, 13, 150527, 15
Offset: 0

Views

Author

Labos Elemer, Nov 07 2001

Keywords

Comments

I.e., a(n) is the least solution to n^2 + (x(x+1)(2x+1)/6) = w^2; a(n) is the length of shortest sum of consecutive squares from 1 to a(n) which when added to n^2 gives a new square.

Examples

			n = 3: a(3) = 5 because n^2 + 1 + 4 + 9 + 16 + 25 = 9 + (1 + 4 + 9 + 16 + 25) = 64 = 8*8; n = 4: a(4) = 767 because n^2 + (1 + 4 + ... + 767^2) = 150700176 = 12276*12726, where 767 is the length of the shortest such consecutive-square sequence which provides (when summed) a new square, namely 12276^2. Often the least solution is rather large. E.g., at n = 93, a(n) = 415151, which means that 93^2 + A000330(415151) = 8649 + (long square sum) = 154436265^2 = 23850559947150225 is the smallest such square number, sum odd distinct consecutive squares except one repetition(8649).
		

Crossrefs

Programs

  • Mathematica
    s=n^2 Do[s=s+m^2; If[IntegerQ[Sqrt[s]], Print[m]], {m, 1, 500000}] (* gives solutions of which the smallest is entered into the sequence *)

Formula

n^2 + (1 + 4 + 9 + ... + a(n)^2) = w^2, where w depends also on n; i.e., sum of consecutive squares from 1, 4, ... to a(n)^2 + n^2 is also a square.

A309671 Primes prime(m) such that G = prime(m-1)# - prime(m) is prime.

Original entry on oeis.org

7, 11, 13, 17, 23, 83, 89, 97, 151, 373, 433, 857, 4013, 8821, 12959
Offset: 1

Views

Author

Mohamed Sami Gattoufi, Aug 11 2019

Keywords

Comments

G = prime(n-1)# - prime(n) where G is a prime is a special case of A090188 where (k=1).

Examples

			7 is a term because 23 = 2*3*5 - 7 is prime.
		

Crossrefs

Programs

  • PARI
    primo(p) = my(ip=primepi(p)); factorback(primes(ip)); \\ A002110
    isok(p) = isprime(p) && isprime(primo(precprime(p-1)) - p);
Showing 1-5 of 5 results.