cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065314 Smallest prime divisor of (n-th primorial - (n+1)-st prime).

Original entry on oeis.org

23, 199, 2297, 30013, 41, 9699667, 2819, 53, 21701, 79, 163, 181, 61, 1619, 14669, 307, 103, 306091, 907, 3217644767340672907899084554047, 267064515689275851355624017992701, 23768741896345550770650537601358213
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger[Times @@ #1 - #2][[1, 1, 1]] & @@ Reverse@ TakeDrop[#, -1] &, Drop[#, 3] &@ FoldList[Flatten@ Append[{#1}, #2] &, Prime@ Range@ 25]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    a(n) = vecmin(factor(prod(k=1, n, prime(k)) - prime(n+1))[,1]); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = A020639( A002110(n) - A000040(n+1) ).

A065315 Smallest prime divisor of n-th primorial + (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 13, 23, 30047, 510529, 9699713, 127, 107, 433, 1093, 375569, 13082761331670077, 941879, 32589158477190044789, 1922760350154212639131, 4129, 92388407, 5879, 40729680599249024150621323549, 1783, 4903, 10279098043, 191, 131, 109, 163, 337, 20261, 673327, 6599, 181
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, sum=37, so a(3)=37.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmin(factor(prod(i=1, n, prime(i)) + prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A020639(A002110(n) + A000040(n+1)).
a(n) = A020639(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

More terms from Michel Marcus, Aug 29 2019

A065317 Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},FactorInteger[#][[-1,1]]&/@(Total/@Thread[{FoldList[ Times,Prime[Range[nn]]],Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

Name clarified by Felix Fröhlich, May 26 2022

A309671 Primes prime(m) such that G = prime(m-1)# - prime(m) is prime.

Original entry on oeis.org

7, 11, 13, 17, 23, 83, 89, 97, 151, 373, 433, 857, 4013, 8821, 12959
Offset: 1

Views

Author

Mohamed Sami Gattoufi, Aug 11 2019

Keywords

Comments

G = prime(n-1)# - prime(n) where G is a prime is a special case of A090188 where (k=1).

Examples

			7 is a term because 23 = 2*3*5 - 7 is prime.
		

Crossrefs

Programs

  • PARI
    primo(p) = my(ip=primepi(p)); factorback(primes(ip)); \\ A002110
    isok(p) = isprime(p) && isprime(primo(precprime(p-1)) - p);
Showing 1-4 of 4 results.