cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A065416 Decimal expansion of Product_{p prime} (1-1/(p^5-p^4)).

Original entry on oeis.org

9, 3, 1, 2, 6, 5, 1, 8, 4, 1, 6, 0, 0, 0, 4, 3, 3, 4, 3, 8, 9, 2, 3, 7, 2, 0, 5, 5, 5, 0, 6, 7, 6, 9, 8, 2, 5, 5, 8, 4, 2, 3, 7, 3, 4, 5, 8, 7, 8, 0, 1, 0, 5, 9, 0, 1, 6, 9, 8, 7, 7, 1, 5, 4, 5, 9, 5, 4, 3, 3, 6, 0, 2, 8, 6, 8, 2, 3, 8, 5, 1, 5, 8, 2, 5, 1, 2, 8, 9, 6, 4, 8, 1, 0, 8, 9, 5, 1, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.93126518416000433438923720555067698...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 0, 1, -1}, {0, 0, 0, 0, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 5, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^5-p^4)) \\ Amiram Eldar, Mar 12 2021

A138403 a(n) = p^3*(p-1), where p = prime(n).

Original entry on oeis.org

8, 54, 500, 2058, 13310, 26364, 78608, 123462, 267674, 682892, 893730, 1823508, 2756840, 3339294, 4775858, 7741604, 11911982, 13618860, 19850358, 25053770, 28009224, 38457042, 46886534, 62037272, 87616608, 103030100, 111458154
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime((n))^4 - NthPrime((n))^3: n in [1..40] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^4 - p^3], {n, 1, 50}]; a
  • PARI
    forprime(p=2,1e3,print1(p^4-p^3", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A000010(prime(n)^4). - R. J. Mathar, Oct 15 2017
From Amiram Eldar, Nov 22 2022: (Start)
a(n) = prime(n)^4 - prime(n)^3 = A030514(n) - A030078(n).
Product_{n>=1} (1 - 1/a(n)) = A065415. (End)
Sum_{n>=1} 1/a(n) = A382551. - R. J. Mathar, Mar 31 2025

A146489 Decimal expansion of Product_{n>=2} (1 - 1/(n^3*(n-1))).

Original entry on oeis.org

8, 5, 0, 6, 7, 0, 6, 3, 0, 7, 9, 1, 1, 0, 4, 3, 5, 3, 7, 5, 0, 3, 0, 9, 5, 2, 1, 2, 5, 0, 0, 0, 6, 2, 3, 4, 9, 9, 9, 1, 5, 0, 5, 9, 8, 1, 9, 5, 4, 4, 2, 8, 3, 0, 6, 5, 6, 7, 6, 6, 0, 5, 6, 8, 2, 2, 9, 1, 2, 7, 0, 7, 4, 4, 5, 4, 1, 0, 7, 6, 6, 2, 2, 8, 9, 6, 9, 1, 9, 5, 1, 3, 1, 2, 2, 1, 0, 5, 5, 2, 0, 9, 6, 9, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Product of Artin's constant of rank 3 and the equivalent almost-prime products.

Examples

			0.85067063079110435... = (1 - 1/8)*(1 - 1/54)*(1 - 1/192)*(1 - 1/500)*(1 - 1/1080)*...
		

Crossrefs

Cf. A065415.

Programs

  • Maple
    r := 3 : ni := fsolve( (n+1)^r*n-1,n,complex) : 1.0/mul(GAMMA(1-d),d=ni) ; # R. J. Mathar, Feb 20 2009
  • Mathematica
    p[k_] := Gamma[1 - Root[#^4 + 3#^3 + 3#^2 + # - 1&, k]]; RealDigits[1/(p[1]*p[2]*p[3]*p[4]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013, after R. J. Mathar *)

Formula

The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r = 3.
s*Sum_{j=1..floor(s/4)} binomial(s-3j-1, j-1)/j = A014097(s)-1.
Equals 1/Product_{k=1..4} Gamma(1-x_k), where x_k are the 4 roots of the polynomial x*(x+1)^3-1. [R. J. Mathar, Feb 20 2009]

Extensions

Offset in b-file corrected by N. J. A. Sloane, Aug 31 2009
Data extended by Jean-François Alcover, Feb 11 2013

A271869 Decimal expansion of Matthews' constant C_3, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 6, 0, 8, 2, 1, 6, 5, 5, 1, 2, 0, 3, 0, 5, 0, 8, 6, 0, 0, 5, 6, 3, 2, 2, 7, 5, 4, 6, 1, 9, 2, 0, 8, 5, 5, 4, 3, 1, 3, 3, 7, 3, 7, 3, 4, 7, 5, 7, 6, 7, 9, 4, 1, 9, 8, 2, 6, 4, 3, 4, 0, 3, 1, 5, 0, 4, 0, 8, 0, 4, 3, 5, 0, 7, 2, 1, 2, 5, 6, 1, 6, 9, 5, 8, 6, 1, 8, 8, 8, 7, 3, 4, 8, 5, 8, 6, 6, 2, 4, 6, 8, 7, 3, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.0608216551203050860056322754619208554313373734757679419826434...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 70; $MaxExtraPrecision = 1000; m0 = 2000; dm = 200; Clear[s]; LR =
    LinearRecurrence[{2, 2, -6, 4, -1}, {0, 6, 0, 22, 5}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> 2 m0, WorkingPrecision -> digits+10] // Exp; s[m0]; s[m = m0+dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[ s[m-dm], 10, digits][[1]], Print[m]; m = m + dm]; Join[{0}, RealDigits[ s[m], 10, digits][[1]]]
  • PARI
    prodeulerrat(1 - (p^3 - (p - 1)^3)/(p^3*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_3 = Product_{p prime} 1 - (p^3 - (p - 1)^3)/(p^3*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020

A066833 Continued fraction expansion of Product_{p prime} (1 - 1/(p^4 - p^3)).

Original entry on oeis.org

0, 1, 5, 1, 33, 49, 2, 1, 3, 2, 2, 2, 8, 1, 1, 28, 1, 7, 1, 1, 34, 2, 2, 2, 10, 2, 1, 9, 1, 1, 8, 2, 3, 16, 5, 7, 2, 14, 4, 2, 3, 4, 1, 3, 2, 3, 1, 8, 6, 2, 1, 32, 1, 10, 1, 3, 11, 2, 6, 6, 2, 1, 42, 1, 1, 2, 1, 2, 5, 1, 3, 4, 1, 1, 2, 1, 2, 5, 1, 1, 1, 15, 1, 2, 1, 4, 1, 1, 2, 6, 4, 15, 1, 1, 1, 2, 3, 1
Offset: 0

Views

Author

Randall L Rathbun, Jan 16 2002

Keywords

Crossrefs

Cf. A065415 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1-1/(p^4-p^3))) \\ Amiram Eldar, Jun 13 2021

A146490 Decimal expansion of Product_{q in A001358} (1-1/(q^3*(q-1))).

Original entry on oeis.org

9, 9, 3, 5, 2, 1, 5, 8, 9, 7, 1, 0, 5, 0, 5, 4, 6, 0, 6, 7, 5, 4, 0, 9, 2, 6, 9, 2, 4, 1, 4, 1, 6, 4, 2, 9, 4, 0, 1, 1, 1, 5, 0, 7, 8, 6, 7, 7, 8, 1, 5, 6, 6, 0, 1, 8, 8
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Semiprime analog of A065415.

Examples

			0.993521589710505460675409269.. = (1-1/192)*(1-1/1080)*(1-1/5832)*...
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_2(s)/j at r=3, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A146491 Decimal expansion of Product_{q in A014612} (1-1/(q^3*(q-1))).

Original entry on oeis.org

9, 9, 9, 6, 4, 5, 2, 3, 8, 3, 3, 2, 6, 1, 3, 3, 6, 7, 7, 3, 0, 2, 0, 6, 6, 3, 9, 1, 2, 0, 7, 2, 6, 7, 7, 7, 5, 0, 3, 9, 6, 0, 5, 7, 4, 8, 3, 1, 3, 5, 8, 3, 4, 5, 0, 0, 8
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

3-almost prime analog of A065415.

Examples

			0.999645238332613367730... = (1-1/3584)*(1-1/19008)*(1-1/99144)*..
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_3(s)/j at r=3, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A271877 Decimal expansion of Matthews' constant C_4, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 2, 6, 1, 0, 7, 4, 4, 6, 3, 1, 4, 9, 1, 7, 7, 0, 8, 0, 8, 3, 2, 4, 9, 3, 9, 4, 3, 1, 3, 8, 2, 1, 4, 6, 7, 2, 5, 5, 6, 2, 6, 6, 7, 3, 6, 4, 0, 5, 5, 3, 8, 0, 4, 5, 2, 7, 6, 1, 1, 7, 3, 3, 7, 1, 0, 2, 4, 9, 8, 2, 0, 0, 5, 6, 5, 8, 7, 0, 1, 4, 0, 9, 9, 6, 8, 4, 7, 0, 4, 8, 1, 5, 1, 1, 5, 2, 2, 6, 0, 3, 8, 6, 9, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.026107446314917708083...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 2000; LR = LinearRecurrence[{2, 3, -10, 10, -5, 1}, {0, -8, 6, -40, 35, -194}, 10^4]; r[n_Integer] := LR[[n]]; NSum[r[n] PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2000, WorkingPrecision -> 300, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, 20]& // First // Prepend[#, 0]&
    $MaxExtraPrecision = 1000; Clear[f]; f[p_] := 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)); Do[c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 105]]], {m, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
  • PARI
    prodeulerrat(1 - (p^4 - (p - 1)^4)/(p^4*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_4 = Product_{p prime} 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020
Showing 1-8 of 8 results.