cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065430 Order of commutator subgroup of GL(2,Z_n) (invertible 2 X 2 matrices mod n: A000252).

Original entry on oeis.org

1, 3, 24, 24, 120, 72, 336, 192, 648, 360, 1320, 576, 2184, 1008, 2880, 1536, 4896, 1944, 6840, 2880, 8064, 3960, 12144, 4608, 15000, 6552, 17496, 8064, 24360, 8640, 29760, 12288, 31680, 14688, 40320, 15552, 50616, 20520, 52416, 23040, 68880
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 16 2001

Keywords

Comments

This sequence may be multiplicative. - Mitch Harris, Apr 19 2005
Multiplicative because A000056 is. - Max Alekseyev

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSum[n, #^2 MoebiusMu[n/#] &]/(1 + Boole[EvenQ@ n]), {n, 41}] (* Michael De Vlieger, Mar 17 2018, after Harvey P. Dale at A000056 *)
    f[p_, e_] := (p^2 - 1)*p^(3*e-2); f[2, e_] := 3*2^(3*e-3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    sl(n) = n * sumdiv(n, d, d^2 * moebius(n / d));
    a(n) = if (n%2, sl(n), sl(n)/2); \\ Michel Marcus, Mar 16 2018

Formula

For odd n: a(n) = A000056(n) i.e. the commutator subgroup is SL(2, Z_n);
for even n: a(n) = A000056(n) / 2 (it has index 2 in SL(2, Z_n)).
From Amiram Eldar, Nov 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(3*e-3), and a(p^e) = (p^2-1)*p^(3*e-2) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 11/(56*zeta(3)) = 0.1634103... . (End)

Extensions

More terms from Max Alekseyev, Jan 22 2010