A065557 Solutions k of the equation phi(k) = phi(k-1) + phi(k-2). Also known as Phibonacci numbers.
3, 5, 7, 11, 17, 23, 37, 41, 47, 101, 137, 233, 257, 857, 1037, 1297, 1541, 1601, 2017, 4337, 6527, 9179, 14401, 16097, 30497, 55387, 61133, 62801, 65537, 72581, 77617, 110177, 152651, 179297, 244967, 299651, 603461, 619697, 686737, 1876727
Offset: 1
Keywords
Examples
phi(23) = phi(22) + phi(21) (22=10+12), so 23 is in the sequence. phi(101) = phi(100) + phi(99) (100=40+60), so 101 is in the sequence.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover Pub., NY, 1966.
- Stanley J. Bezuszka and Margaret Kenney, Number Treasury: A Sourcebook of Problems for Calculators and Computers, Dale Seymour Publications, 1982, pp. 126 and 179.
- Mihai Caragiu, Sequential Experiments with Primes, Springer, 2017, chapter 4, p. 152.
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 117, entry 1037.
- József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 224.
Links
- Jud McCranie, Table of n, a(n) for n = 1..321 (first 85 terms from Harry J. Smith)
- Anders Bagers, Problem E2833, The American Mathematical Monthly, Vol. 87, No. 5 (1980), p. 404, solution, ibid., Vol. 88, No. 8 (1981), p. 622.
- Florian Luca and Pantelimon Stanica, Linear equations with the Euler totient function, Acta Arithmetica, Vol. 128 (2007), pp. 135-147.
- J. L. Pe, On Solutions of phi(n) = phi(n-1) + phi(n-2): A Problem Proposal
Programs
-
Mathematica
Select[ Range[3, 10^6], EulerPhi[ # ] == EulerPhi[ # - 1] + EulerPhi[ # - 2] & ]
-
PARI
for(n=3,10^8, if(eulerphi(n)==eulerphi(n-1)+eulerphi(n-2),print1(n,",")))
-
PARI
{ n=0; e1=eulerphi(2); e2=eulerphi(1); for (m=3, 10^9, e=eulerphi(m); if (e==e2 + e1, write("b065557.txt", n++, " ", m); if (n==100, return)); e2=e1; e1=e ) } \\ Harry J. Smith, Oct 22 2009
Comments