cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A291126 Psibonacci numbers: solutions n of the equation psi(n) = psi(n-1) + psi(n-2), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

3, 6, 210, 88200, 101970, 193290, 289680, 993990, 11264550, 59068230, 72776970, 98746230, 122460690, 126500910, 132766770, 234150930, 514442214, 531391650, 638082390, 650428020, 790769790, 1249160790, 3727074450, 4775972850, 8299675650, 9530202210
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

Analogous to phibonacci numbers (A065557) and other sequences (see crossrefs).

Examples

			psi(210) = 576 = 240 + 336 = psi(209) + psi(208), therefore 210 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    psi[n_]:=If[n < 1, 0, n Sum[ MoebiusMu[ d]^2 / d, {d, Divisors @ n}]];
    Select[Range[10^6], psi[#]==psi[#-1]+psi[#-2] &]

Extensions

a(21)-a(26) from Giovanni Resta, Aug 26 2018

A291176 Numbers k such that s(k) = s(k-1) + s(k-2), where s(k) is the sum of proper divisors of k (A001065).

Original entry on oeis.org

3, 8, 20, 146139, 584835, 44814015, 1436395095, 9988999095, 25997557299, 193861767939, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

a(14) > 10^13. - Giovanni Resta, Feb 25 2020

Examples

			s(146139) = 76581 = 75802 + 779 = s(146138) + s(146137), therefore 146139 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    s[n_]:=DivisorSigma[1,n]-n; Select[Range[10^6], s[#]==s[#-1]+s[#-2] &]

Extensions

a(7)-a(10) from Giovanni Resta, Aug 29 2017
a(11)-a(13) from Giovanni Resta, Feb 25 2020

A292033 Unitary phibonacci numbers: solutions k of the equation uphi(k) = uphi(k-1) + uphi(k-2), where uphi(k) is the unitary totient function (A047994).

Original entry on oeis.org

3, 4, 7, 23, 9179, 244967, 14307856, 24571871, 128199059, 140830367, 401767631, 420567856, 468190439, 525970979, 780768167, 886434647, 1597167647, 4046753951, 4473784823, 5364666167, 5515718207, 11175736336, 14408460167, 18026319712, 20106993887, 20357733131
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2017

Keywords

Comments

The unitary version of A065557. Common terms are 3, 7, 23, 9179, 244967, ... Terms that are not in A065557 are 4, 14307856, 420567856, ...

Examples

			uphi(14307856) = uphi(14307855) + uphi(14307854) (3366080 = 7102080 + 6264000), so 14307856 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    uphi[n_]:=If[n == 1, 1, (Times@@(Table[#[[1]]^#[[2]]-1,{1}] & /@ FactorInteger[n]))[[1]]]; Select[ Range[3, 10^6], uphi[#] == uphi[#-1] + uphi[#-2] &]
  • PARI
    uphi(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1);
    isok(n) = uphi(n)==uphi(n-1)+uphi(n-2); \\ Altug Alkan, Sep 08 2017

Extensions

a(18)-a(26) from Amiram Eldar, Mar 01 2020

A065572 Composite numbers k such that phi(k) = phi(k-1) + phi(k-2).

Original entry on oeis.org

1037, 1541, 6527, 9179, 55387, 61133, 72581, 110177, 152651, 179297, 244967, 299651, 603461, 619697, 1876727, 2841917, 3058211, 3971321, 4110653, 4316441, 4397317, 6008861, 10076627, 10667801, 10835441, 11561597, 24571871, 36521777, 45981377
Offset: 1

Views

Author

Len Smiley and Robert G. Wilson v, Nov 30 2001

Keywords

Comments

619697 = 13*73*653 is the smallest solution not of the form p or p*q for distinct primes p and q.
218688017 is the first term that has four prime factors and 32617225577 is the first term with five prime factors. 72340252337 and 179115011177 are the first two that are not squarefree. There are 175 terms less than 5*10^11. - Jud McCranie, Feb 20 2012

Crossrefs

Cf. A065557 (includes prime solutions).

Programs

  • Mathematica
    Select[ Range[3, 10^7], !PrimeQ[ # ] && EulerPhi[ # ] == EulerPhi[ # - 1] + EulerPhi[ # - 2] & ]
  • PARI
    { n=0; e1=eulerphi(2); e2=eulerphi(1); for (m=3, 10^9, e=eulerphi(m); if (!isprime(m) && e==e2 + e1, write("b065572.txt", n++, " ", m); if (n==100, return)); e2=e1; e1=e ) } \\ Harry J. Smith, Oct 23 2009

Extensions

More terms from Jud McCranie, Feb 21 2012

A066232 Numbers k such that phi(k) = phi(k-2) - phi(k-1).

Original entry on oeis.org

195, 3531, 9339, 27231, 46795, 78183, 90195, 112995, 135015, 437185, 849405, 935221, 1078581, 1283601, 1986975, 2209585, 2341185, 2411175, 2689695, 2744145, 3619071, 3712545, 4738185, 5132985, 6596121, 7829031, 8184715, 12176109
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

As in A065557, all terms listed here are odd. Problem: Prove that this holds in general.

Examples

			Phi(195) = 96 = 192-96 = phi(193)-phi(194).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 10^6], EulerPhi[ # ] == EulerPhi[ # - 2] - EulerPhi[ # - 1] &]
  • PARI
    isok(k) = { k > 2 && eulerphi(k) == eulerphi(k - 2) - eulerphi(k - 1) } \\ Harry J. Smith, Feb 07 2010

Formula

a(n) = A220160(n) + 1 = A197112(n) + 2. - Andrew Howroyd, Dec 19 2024

Extensions

a(13)-a(28) from Harry J. Smith, Feb 07 2010

A066231 Numbers n such that phi(n) = phi(n-1) - phi(n-2).

Original entry on oeis.org

6, 8, 26, 78, 218, 306, 3666, 4646, 5066, 8816, 12206, 12546, 19878, 20436, 24236, 29546, 37736, 47996, 60116, 72086, 73026, 77046, 87476, 121146, 126056, 129246, 149756, 190268, 234636, 247856, 273296, 275724, 419366, 531236, 553476, 621726
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

Question: Are all terms of this sequence even? (Compare A065557, whose terms could be all odd and squarefree.)

Examples

			phi(8) = 4 = 6-2 = phi(7) - phi(6).
		

Crossrefs

Programs

Extensions

a(24)-a(36) from Harry J. Smith, Feb 06 2010

A229552 Numbers k such that phi(k) = phi(k+2) - phi(k+1).

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 35, 39, 45, 99, 135, 231, 255, 855, 1035, 1295, 1539, 1599, 2015, 4335, 6525, 9177, 14399, 16095, 30495, 55385, 61131, 62799, 65535, 72579, 77615, 110175, 152649, 179295, 244965, 299649, 603459, 619695, 686735, 1876725, 2841915, 3058209
Offset: 1

Views

Author

Vincenzo Librandi, Sep 27 2013

Keywords

Crossrefs

Programs

Formula

a(n) = A065557(n) - 2. - Amiram Eldar, Dec 09 2022

A332973 Solutions k of the equation usigma(k) = usigma(k-1) + usigma(k-2) where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

3, 42, 188970, 998670, 51670374, 91397154, 236280786, 259172826, 792554574, 1106710914, 1468869930, 1957827498, 2467823442, 2496238590, 3324585210, 4055970282, 4183629690, 4384566870, 13479861630, 20681058270, 29343074178, 43449285210, 68705958690, 71418085926
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			42 is a term since s(42) = 96 and s(40) + s(41) = 54 + 42 = 96.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[3, 10^8], usigma[#] == usigma[# - 1] + usigma[# - 2] &]
  • PARI
    usigma(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)); \\ A034448
    isok(k) = usigma(k) == usigma(k-1) + usigma(k-2); \\ Jinyuan Wang, Mar 08 2020

Extensions

Terms a(22) and beyond from Giovanni Resta, Mar 10 2020

A332975 Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417).

Original entry on oeis.org

3, 24, 360, 5016, 28440, 42066, 50568, 60456, 187176, 998670, 1454706, 12055512, 14365608, 25726728, 27896424, 51670374, 91702962, 141084774, 236280786, 249854952, 386668344, 439362504, 792554574, 1115866152, 1931976696, 2467823442, 2496238590, 2655297558, 2715505440
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]

A291175 Numbers k such that lambda(k) = lambda(k-1) + lambda(k-2), where lambda(k) is Carmichael lambda function (A002322).

Original entry on oeis.org

3, 5, 7, 11, 13, 22, 46, 371, 717, 1379, 1436, 1437, 3532, 5146, 12209, 35652, 45236, 58096, 93932, 130170, 263589, 327095, 402056, 680068, 808303, 814453, 870689, 991942, 1178628, 1670065, 1686526, 2041276, 2319102, 2324004, 3869372, 4290742, 4449280
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Examples

			lambda(717) = 238 = 178 + 60 = lambda(716) + lambda(715), therefore 717 is in the sequence.
		

Crossrefs

Programs

Showing 1-10 of 16 results. Next