cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065813 Least m such that (p^(2*m+1)-1)/(p-1) is a prime, where p = prime(n).

Original entry on oeis.org

1, 1, 1, 2, 8, 2, 1, 9, 2, 2, 3, 6, 1, 2, 63, 5, 1, 3, 9, 1, 2, 2, 2, 1, 8, 1, 9, 8, 8, 11, 2, 1, 5, 81, 3, 6, 8, 3, 1, 1, 9, 8, 8, 2, 15, 288, 20, 119, 2, 5, 56, 2, 8, 3, 11, 2
Offset: 1

Views

Author

Vladeta Jovovic and Labos Elemer, Nov 13 2001

Keywords

Examples

			a(5) = 8 because ithprime(5) = 11, (11^(2*m+1)-1)/10 is not a prime for m = 1..7 and (11^17-1)/10 = 50544702849929377 is a prime.
		

Crossrefs

Programs

  • Mathematica
    Do[p=Prime[w]; s=DivisorSigma[1, (p^r)^2]; z=DivisorSigma[0, (p^r)^2]; If[PrimeQ[s], Print[{p, r, p^r, s, z}]], {w, 1, 100}, {r, 1, 100}] For w=12, this prints out first {37, 6, 2565726409, 6765811783780036261, 13}.
    lm[n_]:=Module[{m=1},While[!PrimeQ[(n^(2m+1)-1)/(n-1)],m++];m]; lm/@Prime[ Range[ 56]] (* Harvey P. Dale, Feb 16 2014 *)
  • PARI
    { allocatemem(932245000); for (n=1, 100, x=prime(n); s=x^2; q=x - 1; m=1; while (!isprime(((x*=s) - 1)/q), m++); write("b065813.txt", n, " ", m) ) } \\ Harry J. Smith, Oct 31 2009