cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065818 Numbers k such that 3*phi(k) = 2*sigma(k).

Original entry on oeis.org

5, 119, 3553, 4147, 8323, 198679, 218569, 248501, 298129, 468809, 547261, 1098349, 1398061, 1947379, 1990417, 3076549, 3453289, 3994753, 6969529, 7690249, 8790439, 11905457, 13097327, 14346577, 14732011, 14988967, 15286973, 16145269, 20851493, 21622867, 23083081, 24924599, 26218777, 26326867
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Examples

			n = 3553, 3*phi(3553) = 8640 = 2*4320 = 2*sigma(3553).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[20000000], 3EulerPhi[#] == 2DivisorSigma[1, #] &]  (* Harvey P. Dale, Apr 18 2011 *)
  • PARI
    isok(k) = { 3*eulerphi(k) == 2*sigma(k) } \\ Harry J. Smith, Oct 31 2009

Extensions

a(22)-a(28) from Harry J. Smith, Oct 31 2009

A065822 Numbers k such that 5*phi(k) = 4*sigma(k).

Original entry on oeis.org

323, 377, 22591, 42619, 49751, 106711, 119647, 180947, 2782057, 2980823, 2981233, 3794737, 5112427, 5285743, 5732179, 5964229, 6073267, 6669797, 6769927, 7049407, 8025547, 8350633, 8954023, 9373213, 10039471, 10140517, 10842901
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1085*10^4],5EulerPhi[#]==4DivisorSigma[1,#]&] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    { n=0; for (m=1, 10^9, if (5*eulerphi(m) == 4*sigma(m), write("b065822.txt", n++, " ", m); if (n==60, return)) ) } \\ Harry J. Smith, Nov 01 2009
    
  • PARI
    is(n) = {my(f=factor(n)); 5*eulerphi(f) == 4*sigma(f);} \\ Amiram Eldar, Jun 26 2024

Extensions

a(9)-a(27) from Harry J. Smith, Nov 01 2009

A065824 Smallest solution m to (n+1)*phi(m) = n*sigma(m), or -1 if no solution exists.

Original entry on oeis.org

3, 5, 7, 323, 11, 13, 899, 17, 19, 1763, 23, 5249, 3239, 29, 31, 979801, 5459, 37, 10763, 41, 43, 9179, 47, 9701, 10403, 53, 12319, 5646547, 59, 61, 24569, 19109, 67, 19043, 71, 73, 22499, 50819, 79, 41309, 83, 32639, 46979, 89, 34579, 39059, 125969
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Comments

If p = a(n) is a prime solution, then (n+1)*(p-1) = n*(p+1) and p = 2n+1, so position for p if it is in fact a minimal solution is at n = (p-1)/2. E.g. 29 appears at 14th position shown by A005097. On the other hand large and (seemingly always composite) solutions arise at indices shown essentially by A047845. Also, differences between the sites of two consecutive small prime solutions appears to be d/2, half the difference between consecutive primes (A001223).

Crossrefs

Programs

  • Mathematica
    max = 10^7; a[n_] := For[m = 3, m <= max, m++, If[(n+1)*EulerPhi[m] == n*DivisorSigma[1, m], Print[m]; Return[m]]] /. Null -> -1; Array[a, 50] (* Jean-François Alcover, Oct 08 2016 *)
  • Python
    from itertools import count
    from math import prod
    from sympy import factorint
    def A065824(n):
        for m in count(1):
            f = factorint(m)
            if (n+1)*m*prod((p-1)**2 for p in f)==n*prod(p**(e+2)-p for p,e in f.items()):
                return m # Chai Wah Wu, Aug 12 2024

Formula

(n+1)*A000010(a(n)) = n*A000203(a(n)), smallest x=a(n) solutions.

A065823 Numbers k such that 6*phi(k) = 5*sigma(k).

Original entry on oeis.org

11, 527, 923, 36859, 40549, 55309, 88519, 120139, 138301, 280579, 293501, 313807, 529789, 719927, 2458859, 4864117, 6191413, 6811243, 7297877, 8402663, 8624107, 9487477, 10475821, 12356441, 12940957, 13624717, 13971229, 14869033, 15293137
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Comments

Not all terms are squarefree: a(74) = 137640191 = 13^2 * 89 * 9151. - Charles R Greathouse IV, Nov 13 2015
Apart from the first term, no terms are divisible by 2, 3, 5, 7, or 11. - Charles R Greathouse IV, Nov 13 2015

Crossrefs

Subsequence of A008364.

Programs

  • PARI
    n=0; for (m=1, 10^9, if (6*eulerphi(m) == 5*sigma(m), write("b065823.txt", n++, " ", m); if (n==70, return))) \\ Harry J. Smith, Nov 01 2009
    
  • PARI
    is(n)=my(f=factor(n)); 6*eulerphi(f)==5*sigma(f) \\ Charles R Greathouse IV, Nov 13 2015

Extensions

Terms a(16)-a(29) from Harry J. Smith, Nov 01 2009
Showing 1-4 of 4 results.