A065827 Sum of squares of divisors of square numbers.
1, 21, 91, 341, 651, 1911, 2451, 5461, 7381, 13671, 14763, 31031, 28731, 51471, 59241, 87381, 83811, 155001, 130683, 221991, 223041, 310023, 280371, 496951, 406901, 603351, 597871, 835791, 708123, 1244061, 924483, 1398101, 1343433, 1760031, 1595601, 2516921
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..500 from Harry J. Smith)
Programs
-
Maple
A065827 := proc(n) numtheory[sigma][2](n^2) ; end proc: seq(A065827(n),n=1..20) ; # R. J. Mathar, Apr 01 2011
-
Mathematica
DivisorSigma[2,#]&/@(Range[40]^2) (* Harvey P. Dale, May 18 2011 *) f[p_, e_] := (p^(4*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
-
PARI
{ for (n=1, 500, a=sigma(n^2, 2); write("b065827.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 01 2009
-
Sage
[sigma(n^2,2)for n in range(1,34)] # Zerinvary Lajos, Jun 13 2009
Formula
Multiplicative with a(p^e) = (p^(4*e+2)-1)/(p^2-1).
a(n) = A001157(n^2). - R. J. Mathar, Mar 31 2011
Dirichlet g.f. zeta(s)*zeta(s-2)*zeta(s-4)/zeta(2s-4). Dirichlet convolution of A001159 by the arithmetic function with terms n^2*A008966(n). - R. J. Mathar, Mar 31 2011
Sum_{k=1..n} a(k) ~ 189 * Zeta(3) * Zeta(5) * n^5 / Pi^6. - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = 1.06464520174524878494847955427968776606386158167258511428260450690334042955... - Vaclav Kotesovec, Sep 20 2020