cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065827 Sum of squares of divisors of square numbers.

Original entry on oeis.org

1, 21, 91, 341, 651, 1911, 2451, 5461, 7381, 13671, 14763, 31031, 28731, 51471, 59241, 87381, 83811, 155001, 130683, 221991, 223041, 310023, 280371, 496951, 406901, 603351, 597871, 835791, 708123, 1244061, 924483, 1398101, 1343433, 1760031, 1595601, 2516921
Offset: 1

Views

Author

Vladeta Jovovic, Dec 06 2001

Keywords

Crossrefs

Programs

  • Maple
    A065827 := proc(n) numtheory[sigma][2](n^2) ; end proc:
    seq(A065827(n),n=1..20) ; # R. J. Mathar, Apr 01 2011
  • Mathematica
    DivisorSigma[2,#]&/@(Range[40]^2) (* Harvey P. Dale, May 18 2011 *)
    f[p_, e_] := (p^(4*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    { for (n=1, 500, a=sigma(n^2, 2); write("b065827.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 01 2009
  • Sage
    [sigma(n^2,2)for n in range(1,34)] # Zerinvary Lajos, Jun 13 2009
    

Formula

Multiplicative with a(p^e) = (p^(4*e+2)-1)/(p^2-1).
a(n) = A001157(n^2). - R. J. Mathar, Mar 31 2011
Dirichlet g.f. zeta(s)*zeta(s-2)*zeta(s-4)/zeta(2s-4). Dirichlet convolution of A001159 by the arithmetic function with terms n^2*A008966(n). - R. J. Mathar, Mar 31 2011
Sum_{k=1..n} a(k) ~ 189 * Zeta(3) * Zeta(5) * n^5 / Pi^6. - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = 1.06464520174524878494847955427968776606386158167258511428260450690334042955... - Vaclav Kotesovec, Sep 20 2020