A065889 a(n) = number of unicyclic connected simple graphs whose cycle has length 4.
3, 60, 1080, 20580, 430080, 9920232, 252000000, 7015381560, 212840939520, 6998969586180, 248180493969408, 9445533398437500, 384213343210045440, 16639691095281974160, 764619269867445288960, 37163398969133506235952, 1905131520000000000000000
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..150
Crossrefs
Programs
-
GAP
List([4..25], n-> 12*Binomial(n,4)*n^(n-5)); # G. C. Greubel, May 16 2019
-
Magma
[12*Binomial(n,4)*n^(n-5) : n in [4..25]]; // G. C. Greubel, May 16 2019
-
Mathematica
Table[12*Binomial[n,4]*n^(n-5), {n,4,25}] (* G. C. Greubel, May 16 2019 *)
-
PARI
{a(n) = 12*binomial(n,4)*n^(n-5)}; \\ G. C. Greubel, May 16 2019
-
Sage
[12*binomial(n,4)*n^(n-5) for n in (4..25)] # G. C. Greubel, May 16 2019
Formula
E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - Vladeta Jovovic, Oct 26 2004
a(n) = 3 * A053508(n). - Alois P. Heinz, Jan 09 2025