cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065889 a(n) = number of unicyclic connected simple graphs whose cycle has length 4.

Original entry on oeis.org

3, 60, 1080, 20580, 430080, 9920232, 252000000, 7015381560, 212840939520, 6998969586180, 248180493969408, 9445533398437500, 384213343210045440, 16639691095281974160, 764619269867445288960, 37163398969133506235952, 1905131520000000000000000
Offset: 4

Views

Author

Len Smiley, Nov 27 2001

Keywords

Crossrefs

A065888 ( = 2*A065889) counts sagittal graphs with one cycle (length 4).
A column of A098909, A053507.
Main diagonal of A144209.
Cf. A053508.

Programs

  • GAP
    List([4..25], n-> 12*Binomial(n,4)*n^(n-5)); # G. C. Greubel, May 16 2019
  • Magma
    [12*Binomial(n,4)*n^(n-5) : n in [4..25]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    Table[12*Binomial[n,4]*n^(n-5), {n,4,25}] (* G. C. Greubel, May 16 2019 *)
  • PARI
    {a(n) = 12*binomial(n,4)*n^(n-5)}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [12*binomial(n,4)*n^(n-5) for n in (4..25)] # G. C. Greubel, May 16 2019
    

Formula

E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - Vladeta Jovovic, Oct 26 2004
a(n) = 3 * A053508(n). - Alois P. Heinz, Jan 09 2025