A060421 Numbers k such that the first k digits of the decimal expansion of Pi form a prime.
1, 2, 6, 38, 16208, 47577, 78073, 613373
Offset: 1
Examples
3 is prime, so a(1) = 1; 31 is prime, so a(2) = 2; 314159 is prime, so a(3) = 6; ...
Links
- K. S. Brown, Primes in the Decimal Expansion of Pi [Broken link?]
- K. S. Brown, Primes in the Decimal Expansion of Pi [Cached copy]
- Prime Curios, 314159
- Prime Curios, 31415...36307 (16208-digits)
- Shyam Sunder Gupta, Mystery of pi, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 19, 473-497.
- Eric Weisstein's World of Mathematics, Constant Primes
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Pi Digits
- Eric Weisstein's World of Mathematics, Pi-Prime
Crossrefs
Primes in other constants: A064118 (e), A065815 (gamma), A064119 (phi), A118328 (Catalan's constant), A115377 (sqrt(2)), A119344 (sqrt(3)), A228226 (log 2), A228240 (log 10), A119334 (zeta(3)), A122422 (Soldner's constant), A118420 (Glaisher-Kinkelin constant), A174974 (Golomb-Dickman constant), A118327 (Khinchin's constant).
Programs
-
Mathematica
Do[If[PrimeQ[FromDigits[RealDigits[N[Pi, n + 10], 10, n][[1]]]], Print[n]], {n, 1, 9016} ]
Extensions
a(6) = 47577 from Eric W. Weisstein, Apr 01 2006
a(7) = 78073 from Eric W. Weisstein, Jul 13 2006
a(8) = 613373 from Adrian Bondrescu, May 29 2016
Comments