A066043 a(1) = 1; for m > 0, a(2m) = 2m, a(2m+1) = 4m+2.
1, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134, 68
Offset: 1
Examples
r(k,7) is sequence 1, 2, 0, 0, 1, 6, 1, 1, 3, 2, 2, 3, 5, 0, 1, 2, 0, 0, 1, 6, 1, 1, 3, 2, 2, 3, 5, 0.... which is periodic with period (1, 2, 0, 0, 1, 6, 1, 1, 3, 2, 2, 3, 5, 0) of length 14 = a(7).
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Mathematica
Join[{1}, LCM[Range[2, 100], 2]] (* Paolo Xausa, Feb 19 2024 *)
-
PARI
a(n)=if(n<2,1,if(n%2,2*n,n))
-
PARI
{ for (n=1, 1000, a=if (n>1 && n%2, 2*n, n); write("b066043.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 08 2009
Formula
O.g.f.: (x+2x^2+4x^3-x^5)/(1-x^2)^2. - Len Smiley, Dec 05 2001
a(n)*a(n+3) = -4 + a(n+1)*a(n+2).
From Harry J. Smith, Nov 08 2009: (Start)
a(n) = A109043(n), n > 1.
a(n) = 2*A026741(n), n > 1. (End)
Comments