A066183 Total sum of squares of parts in all partitions of n.
1, 6, 17, 44, 87, 180, 311, 558, 910, 1494, 2302, 3608, 5343, 7986, 11554, 16714, 23549, 33270, 45942, 63506, 86338, 117156, 156899, 209926, 277520, 366260, 479012, 624956, 808935, 1044994, 1340364, 1715572, 2182935, 2770942, 3499379
Offset: 1
Keywords
Examples
a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, arXiv:0804.1849v3 [math.CO], May 09 2008.
Programs
-
Maple
b:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i<1 then [0, 0] elif i>n then b(n, i-1) else g:= b(n, i-1); h:= b(n-i, i); [g[1]+h[1], g[2]+h[2] +h[1]*i^2] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..40); # Alois P. Heinz, Feb 23 2012 # second Maple program: g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
-
Mathematica
Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}] (* Second program: *) b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
-
PARI
a(n)=my(s); forpart(v=n,s+=sum(i=1,#v,v[i]^2));s \\ Charles R Greathouse IV, Aug 31 2015
-
PARI
a(n)=sum(k=1,n,sigma(k,2)*numbpart(n-k)) \\ Charles R Greathouse IV, Aug 31 2015
Formula
a(n) = Sum_{k=1..n} sigma_2(k)*numbpart(n-k), where sigma_2(k)=sum of squares of divisors of k=A001157(k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k>=0} k*A265245(n,k). - Emeric Deutsch, Dec 06 2015
G.f.: g(x) = (Sum_{k>=1} k^2*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 3*sqrt(2)*Zeta(3)/Pi^3 * exp(Pi*sqrt(2*n/3)) * sqrt(n). - Vaclav Kotesovec, May 28 2018
Extensions
More terms from Naohiro Nomoto, Feb 07 2002
Comments