A066186 Sum of all parts of all partitions of n.
0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
Offset: 0
Examples
a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9. a(4)=20 because A000041(4)=5 and 4*5=20.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265, alternate copy. - From _N. J. A. Sloane_, Jan 02 2013
- F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
- T. J. Osler, A. Hassen and T. R. Chandrupatia, Surprising connections between partitions and divisors, The College Mathematics Journal, Vol. 38. No. 4, Sep. 2007, 278-287 (see p. 287).
- Omar E. Pol, Illustration of a(10), prism and tower, each polycube contains 420 cubes.
- Omar E. Pol, Illustration of initial terms of A066186 and of A139582 (n>=1)
Crossrefs
Programs
-
Haskell
a066186 = sum . concat . ps 1 where ps _ 0 = [[]] ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)] -- Reinhard Zumkeller, Jul 13 2013
-
Maple
with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
-
Mathematica
PartitionsP[ Range[0, 60] ] * Range[0, 60]
-
PARI
a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
-
Python
from sympy import npartitions def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
-
Sage
[n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
Formula
a(n) = n * A000041(n). - Omar E. Pol, Oct 10 2011
G.f.: x * (d/dx) Product_{k>=1} 1/(1-x^k), i.e., derivative of g.f. for A000041. - Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = A220909(n)/2. - Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} k*A036043(n,n-k+1). - L. Edson Jeffery, Aug 03 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016
Extensions
a(0) added by Franklin T. Adams-Watters, Jul 28 2014
Comments