A066207 All primes that divide n are of the form prime(2k), where prime(k) is k-th prime.
1, 3, 7, 9, 13, 19, 21, 27, 29, 37, 39, 43, 49, 53, 57, 61, 63, 71, 79, 81, 87, 89, 91, 101, 107, 111, 113, 117, 129, 131, 133, 139, 147, 151, 159, 163, 169, 171, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 261, 263, 267, 271, 273
Offset: 1
Keywords
Examples
39 is included because 3 * 13 = prime(2) * prime(6) and 2 and 6 are both even.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000 (original first 1000 terms from Harry J. Smith)
Crossrefs
Programs
-
Mathematica
Select[Range[273], AllTrue[PrimePi@ FactorInteger[#][[All, 1]], EvenQ] &] (* Michael De Vlieger, Dec 11 2017, range adjusted by Antti Karttunen, Jul 18 2020 *)
-
PARI
{ n=0; for (m=2, 10^9, f=factor(m); b=1; for(i=1, matsize(f)[1], if (primepi(f[i, 1])%2, b=0; break)); if (b, write("b066207.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 06 2010
-
PARI
isA066207(n) = (!#select(p -> (primepi(p)%2), factor(n)[,1])); \\ Antti Karttunen, Jul 18 2020
Extensions
Offset changed from 0 to 1 by Harry J. Smith, Feb 06 2010
a(53)-a(58) from Harry J. Smith, Feb 06 2010
a(1) = 1 inserted (and the indexing of the rest of terms changed) by Antti Karttunen, Jul 18 2020
Comments