cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 77 results. Next

A360646 Square array A(n, k), n, k > 0, read by antidiagonals upwards; A(n, k) = A066208(n) * A066207(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 5, 12, 14, 9, 8, 15, 28, 18, 13, 10, 24, 35, 36, 26, 19, 11, 30, 56, 45, 52, 38, 21, 16, 33, 70, 72, 65, 76, 42, 27, 17, 48, 77, 90, 104, 95, 84, 54, 29, 20, 51, 112, 99, 130, 152, 105, 108, 58, 37, 22, 60, 119, 144, 143, 190, 168, 135, 116, 74, 39
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2023

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Array A(n, k) begins:
  n\k |  1   2    3    4    5    6    7    8    9   10
  ----+-----------------------------------------------
    1 |  1   3    7    9   13   19   21   27   29   37
    2 |  2   6   14   18   26   38   42   54   58   74
    3 |  4  12   28   36   52   76   84  108  116  148
    4 |  5  15   35   45   65   95  105  135  145  185
    5 |  8  24   56   72  104  152  168  216  232  296
    6 | 10  30   70   90  130  190  210  270  290  370
    7 | 11  33   77   99  143  209  231  297  319  407
    8 | 16  48  112  144  208  304  336  432  464  592
    9 | 17  51  119  153  221  323  357  459  493  629
   10 | 20  60  140  180  260  380  420  540  580  740
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, 1) = A066208(n) = A247503(A(n,k)).
A(1, k) = A066207(k) = A248101(A(n,k)).

A374611 If n = A066207(i) * A066208(j) for some i, j > 0 then a(n) = A066207(j) * A066208(i).

Original entry on oeis.org

1, 3, 2, 7, 9, 6, 4, 13, 5, 19, 21, 14, 8, 12, 18, 27, 29, 15, 10, 37, 11, 39, 43, 26, 49, 24, 16, 28, 17, 38, 53, 57, 42, 61, 36, 35, 20, 30, 22, 63, 71, 33, 23, 79, 45, 81, 87, 54, 25, 89, 58, 56, 31, 48, 91, 52, 32, 51, 101, 74, 34, 107, 40, 111, 72, 78
Offset: 1

Views

Author

Rémy Sigrist, Jul 14 2024

Keywords

Comments

This sequence is a self-inverse permutation of the positive integers with infinitely many fixed points.

Examples

			For n = 42: 42 = 21 * 2 = A066207(7) * A066208(2), so a(42) = A066207(2) * A066208(7) = 3 * 11 = 33.
		

Crossrefs

See A374600 for a similar sequence.

Programs

  • PARI
    \\ See Links section.

Formula

a(A360646(n, k)) = A360646(k, n).
a(n) = n iff n = A066207(k) * A066208(k) for some k > 0.

A025065 Number of palindromic partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629
Offset: 0

Views

Author

Keywords

Comments

That is, the number of partitions of n into parts which can be listed in palindromic order.
Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - T. D. Noe, Aug 05 2005
Also, partial sums of A035363.
Also number of partitions of n with at most one part occurring an odd number of times. - Reinhard Zumkeller, Dec 18 2013
The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - Clark Kimberling, Jan 20 2014
a(n) is the number of partitions p of n+1 such that 2*max(p) > n+1. - Clark Kimberling, Apr 20 2014.
From Gus Wiseman, Nov 28 2018: (Start)
Also the number of integer partitions of n + 2 that are the vertex-degrees of some hypertree. For example, the a(6) = 7 partitions of 8 that are the vertex-degrees of some hypertree, together with a realizing hypertree are:
(41111): {{1,2},{1,3},{1,4},{1,5}}
(32111): {{1,2},{1,3},{1,4},{2,5}}
(22211): {{1,2},{1,3},{2,4},{3,5}}
(311111): {{1,2},{1,3},{1,4,5,6}}
(221111): {{1,2},{1,3},{2,4,5,6}}
(2111111): {{1,2},{1,3,4,5,6,7}}
(11111111): {{1,2,3,4,5,6,7,8}}
(End)
Conjecture: a(n) is the length of maximal initial segment of A308355(n-1) that is identical to row n of A128628, for n >= 2. - Clark Kimberling, May 24 2019
From Gus Wiseman, May 21 2021: (Start)
The Heinz numbers of palindromic partitions are given by A265640. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
Also the number of integer partitions of n with a part greater than or equal to n/2. This is equivalent to Clark Kimberling's final comment above. The Heinz numbers of these partitions are given by A344414. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(211) (311) (51) (61) (62)
(321) (421) (71)
(411) (511) (422)
(3111) (4111) (431)
(521)
(611)
(4211)
(5111)
(41111)
Also the number of integer partitions of n with at least n/2 parts. The Heinz numbers of these partitions are given by A344296. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (21) (22) (221) (222) (2221) (2222)
(11) (111) (31) (311) (321) (3211) (3221)
(211) (2111) (411) (4111) (3311)
(1111) (11111) (2211) (22111) (4211)
(3111) (31111) (5111)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			The partitions for the first few values of n are as follows:
n: partitions .......................... number
1: 1 ................................... 1
2: 2 11 ................................ 2
3: 3 111 ............................... 2
4: 4 22 121 1111 ....................... 4
5: 5 131 212 11111 ..................... 4
6: 6 141 33 222 1221 11211 111111 ...... 7
7: 7 151 313 11311 232 21112 1111111 ... 7
From _Reinhard Zumkeller_, Jan 23 2010: (Start)
Partitions into 1,2,4,6,... for the first values of n:
1: 1 ....................................... 1
2: 2 11 .................................... 2
3: 21 111 .................................. 2
4: 4 22 211 1111 ........................... 4
5: 41 221 2111 11111 ....................... 4
6: 6 42 4211 222 2211 21111 111111.......... 7
7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)
		

Crossrefs

Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010
The bisections are both A000070.
The ordered version (palindromic compositions) is A016116.
The complement is counted by A233771 and A210249.
The case of palindromic prime signature is A242414.
Palindromic partitions are ranked by A265640, with complement A229153.
The case of palindromic plane trees is A319436.
The multiplicative version (palindromic factorizations) is A344417.
A000569 counts graphical partitions.
A027187 counts partitions of even length, ranked by A028260.
A035363 counts partitions into even parts, ranked by A066207.
A058696 counts partitions of even numbers, ranked by A300061.
A110618 counts partitions with length <= half sum, ranked by A344291.

Programs

  • Haskell
    a025065 = p (1:[2,4..]) where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Haskell
    import Data.List (group)
    a025065 = length . filter (<= 1) .
                       map (sum . map ((`mod` 2) . length) . group) . ps 1
       where ps x 0 = [[]]
             ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Mathematica
    Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *)
    n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *)
    CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *)
  • PARI
    N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014

Formula

a(n) = A000070(A004526(n)). - Reinhard Zumkeller, Jan 23 2010
G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [Joerg Arndt, Mar 11 2014]
a(2*k+2) = a(2*k) + A000041(k + 1). - David A. Corneth, May 29 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2*Pi*sqrt(n)). - Vaclav Kotesovec, Nov 16 2021

Extensions

Edited by N. J. A. Sloane, Dec 29 2007
Prepended a(0)=1, added more terms, Joerg Arndt, Mar 11 2014

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A066208 All primes that divide n are of the form prime(2k-1), where prime(k) is k-th prime.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 11, 16, 17, 20, 22, 23, 25, 31, 32, 34, 40, 41, 44, 46, 47, 50, 55, 59, 62, 64, 67, 68, 73, 80, 82, 83, 85, 88, 92, 94, 97, 100, 103, 109, 110, 115, 118, 121, 124, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 164, 166, 167, 170, 176, 179, 184
Offset: 1

Views

Author

Leroy Quet, Dec 16 2001

Keywords

Comments

The partitions into odd parts, encoded by their Heinz numbers. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: 50 ( = 2*5*5) is in the sequence because it is the Heinz number of the partition [1, 3, 3]. - Emeric Deutsch, May 19 2015
From Peter Munn, Aug 11 2022: (Start)
Closed under multiplication.
Encodings, as defined in A206284, of even polynomials with nonnegative integer coefficients; so closed under application of A297845(.,.), which represents the multiplication of polynomials encoded this way.
(End)
For every positive integer m there exists a unique ordered pair of positive integers (j,k) such that m = a(j)*A066207(k). - Christopher Scussel, Aug 08 2023

Examples

			20 is included because 20 = 2^2 * 5 = p(1)^2 * p(3) and 1 and 3 are both odd.
		

Crossrefs

Cf. A066207.
See comments for the relationship to A206284, A215366, A297845.

Programs

  • PARI
    { n=0; for (m=2, 10^9, f=factor(m); b=1; for(i=1, matsize(f)[1], if (primepi(f[i, 1])%2 == 0, b=0; break)); if (b, write("b066208.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 06 2010

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Feb 06 2010
a(61) and a(62) from Harry J. Smith, Feb 06 2010
1 prepended by Peter Munn, Aug 11 2022

A195017 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} c_k*((-1)^(k-1)).

Original entry on oeis.org

0, 1, -1, 2, 1, 0, -1, 3, -2, 2, 1, 1, -1, 0, 0, 4, 1, -1, -1, 3, -2, 2, 1, 2, 2, 0, -3, 1, -1, 1, 1, 5, 0, 2, 0, 0, -1, 0, -2, 4, 1, -1, -1, 3, -1, 2, 1, 3, -2, 3, 0, 1, -1, -2, 2, 2, -2, 0, 1, 2, -1, 2, -3, 6, 0, 1, 1, 3, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, 5, -4, 2, 1, 0, 2, 0, -2, 4, -1, 0, -2, 3, 0, 2, 0, 4, 1, -1, -1, 4, -1, 1, 1, 2, -1
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2012

Keywords

Comments

Let p(n,x) be the completely additive polynomial-valued function such that p(1,x) = 0 and p(prime(n),x) = x^(n-1), like is defined in A206284 (although here we are not limited to just irreducible polynomials). Then a(n) is the value of the polynomial encoded in such a manner by n, when it is evaluated at x=-1. - The original definition rewritten and clarified by Antti Karttunen, Oct 03 2018
Positions of 0 give the values of n for which the polynomial p(n,x) is divisible by x+1. For related sequences, see the Mathematica section.
Also the number of odd prime indices of n minus the number of even prime indices of n (both counted with multiplicity), where a prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Oct 24 2023

Examples

			The sequence can be read from a list of the polynomials:
  p(n,x)      with x = -1, gives a(n)
------------------------------------------
  p(1,x) = 0           0
  p(2,x) = 1x^0        1
  p(3,x) = x          -1
  p(4,x) = 2x^0        2
  p(5,x) = x^2         1
  p(6,x) = 1+x         0
  p(7,x) = x^3        -1
  p(8,x) = 3x^0        3
  p(9,x) = 2x         -2
  p(10,x) = x^2 + 1    2.
(The list runs through all the polynomials whose coefficients are nonnegative integers.)
		

Crossrefs

For other evaluation functions of such encoded polynomials, see A001222, A048675, A056239, A090880, A248663.
Zeros are A325698, distinct A325700.
For sum instead of count we have A366749 = A366531 - A366528.
A000009 counts partitions into odd parts, ranked by A066208.
A035363 counts partitions into even parts, ranked by A066207.
A112798 lists prime indices, reverse A296150, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 200;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x] /. x -> 0, {n, 1, z/2}]   (* A007814 *)
    Table[p[2 n, x] /. x -> 0, {n, 1, z/2}] (* A001511 *)
    Table[p[n, x] /. x -> 1, {n, 1, z}]     (* A001222 *)
    Table[p[n, x] /. x -> 2, {n, 1, z}]     (* A048675 *)
    Table[p[n, x] /. x -> 3, {n, 1, z}]     (* A090880 *)
    Table[p[n, x] /. x -> -1, {n, 1, z}]    (* A195017 *)
    z = 100; Sum[-(-1)^k IntegerExponent[Range[z], Prime[k]], {k, 1, PrimePi[z]}] (* Friedjof Tellkamp, Aug 05 2024 *)
  • PARI
    A195017(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * (-1)^(1+primepi(f[i,1])))); } \\ Antti Karttunen, Oct 03 2018

Formula

Totally additive with a(p^e) = e * (-1)^(1+PrimePi(p)), where PrimePi(n) = A000720(n). - Antti Karttunen, Oct 03 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} = (-1)^(primepi(p)+1)/(p-1) = Sum_{k>=1} (-1)^(k+1)/A006093(k) = A078437 + Sum_{k>=1} (-1)^(k+1)/A036689(k) = 0.6339266524059... . - Amiram Eldar, Sep 29 2023
a(n) = A257991(n) - A257992(n). - Gus Wiseman, Oct 24 2023
a(n) = -Sum_{k=1..pi(n)} (-1)^k * valuation(n, prime(k)). - Friedjof Tellkamp, Aug 05 2024

Extensions

More terms, name changed and example-section edited by Antti Karttunen, Oct 03 2018

A236913 Number of partitions of 2n of type EE (see Comments).

Original entry on oeis.org

1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425
Offset: 0

Views

Author

Clark Kimberling, Feb 01 2014

Keywords

Comments

The partitions of n are partitioned into four types:
EO, even # of odd parts and odd # of even parts, A236559;
OE, odd # of odd parts and even # of even parts, A160786;
EE, even # of odd parts and even # of even parts, A236913;
OO, odd # of odd parts and odd # of even parts, A236914.
A236559 and A160786 are the bisections of A027193;
A236913 and A236914 are the bisections of A027187.

Examples

			The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3.
type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
From _Gus Wiseman_, Feb 09 2021: (Start)
This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are:
  ()  (11)  (22)    (33)      (44)
            (31)    (42)      (53)
            (1111)  (51)      (62)
                    (2211)    (71)
                    (3111)    (2222)
                    (111111)  (3221)
                              (3311)
                              (4211)
                              (5111)
                              (221111)
                              (311111)
                              (11111111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The ordered version is A000302.
The case of odd-length partitions of odd numbers is A160786 (A340931).
The Heinz numbers of these partitions are (A340784).
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A072233 counts partitions by sum and length.
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
          `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
          `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
              [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
        end:
    a:= n-> b(2*n$2)[1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 16 2014
  • Mathematica
    z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,      OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
    m1 (* A236559, type EO*)
    m2 (* A160786, type OE*)
    m3 (* A236913, type EE*)
    m4 (* A236914, type OO*)
    (* Peter J. C. Moses, Feb 03 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* Gus Wiseman, Feb 09 2021 *)

Extensions

More terms from Alois P. Heinz, Feb 16 2014

A087897 Number of partitions of n into odd parts greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2003

Keywords

Comments

Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)

Examples

			1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01:  [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03:  [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04:  [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05:  [ 1 1 1 2 5 5 5 2 1 1 1 ]
06:  [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07:  [ 1 1 3 5 5 5 3 1 1 ]
08:  [ 1 1 7 7 7 1 1 ]
09:  [ 1 2 2 5 5 5 2 2 1 ]
10:  [ 1 4 5 5 5 4 1 ]
11:  [ 2 2 2 2 3 3 3 2 2 2 2 ]
12:  [ 2 3 5 5 5 3 2 ]
13:  [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
  7  53  9    55  B    75    D    77    F      97    H      99      J
         333  73  533  93    553  95    555    B5    755    B7      775
                       3333  733  B3    753    D3    773    D5      955
                                  5333  933    5533  953    F3      973
                                        33333  7333  B33    5553    B53
                                                     53333  7533    D33
                                                            9333    55333
                                                            333333  73333
(End)
		

References

  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I

Crossrefs

The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Haskell
    a087897 = p [3,5..] where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A087897_T(n,k):
        if n==0: return 1
        if k<3 or n<0: return 0
        return A087897_T(n,k-2)+A087897_T(n-k,k)
    def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz

Formula

Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023

A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.

Original entry on oeis.org

1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1

Views

Author

Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004

Keywords

Comments

Number of partitions of n such that all differences between successive parts are even, see example. [Joerg Arndt, Dec 27 2012]
Number of partitions of n where either all parts are odd or all parts are even. - Omar E. Pol, Aug 16 2013
From Gus Wiseman, Jan 13 2022: (Start)
Also the number of integer partitions of n with all even multiplicities (or run-lengths) except possibly the first. These are the conjugates of the partitions described by Joerg Arndt above. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (11111) (222) (511) (422)
(1111) (411) (31111) (611)
(2211) (1111111) (2222)
(21111) (3311)
(111111) (22211)
(41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			From _Joerg Arndt_, Dec 27 2012: (Start)
There are a(10)=17 partitions of 10 where all differences between successive parts are even:
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 2 2 2 2 ]
[ 3]  [ 3 1 1 1 1 1 1 1 ]
[ 4]  [ 3 3 1 1 1 1 ]
[ 5]  [ 3 3 3 1 ]
[ 6]  [ 4 2 2 2 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 1 1 1 1 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 5 ]
[11]  [ 6 2 2 ]
[12]  [ 6 4 ]
[13]  [ 7 1 1 1 ]
[14]  [ 7 3 ]
[15]  [ 8 2 ]
[16]  [ 9 1 ]
[17]  [ 10 ]
(End)
		

References

  • A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.

Crossrefs

Bisections are A078408 and A096967.
The complement in partitions is counted by A006477
A version for compositions is A016116.
A pointed version is A035363, ranked by A066207.
A000041 counts integer partitions.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A058696 counts partitions of even numbers, ranked by A300061.
A340785 counts factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
          `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
           b(n-i*j, i+1), 0), j=0..n/i))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    (* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
    Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
    a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
    Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
  • PARI
    my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016

Formula

G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
a(2*n) = A000041(n) + A000009(2*n); a(2*n-1) = A000009(2*n-1). - Vladeta Jovovic, Aug 11 2004
a(n) = A000009(n) + A035363(n) = A000041(n) - A006477(n). - Omar E. Pol, Aug 16 2013

A366528 Sum of odd prime indices of n.

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 0, 3, 0, 4, 5, 2, 0, 1, 3, 4, 7, 1, 0, 5, 0, 6, 9, 3, 6, 1, 0, 2, 0, 4, 11, 5, 5, 8, 3, 2, 0, 1, 0, 6, 13, 1, 0, 7, 3, 10, 15, 4, 0, 7, 7, 2, 0, 1, 8, 3, 0, 1, 17, 5, 0, 12, 0, 6, 3, 6, 19, 9, 9, 4, 0, 3, 21, 1, 6, 2, 5, 1, 0, 7, 0, 14, 23, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239(n).

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 1+5 = 6.
		

Crossrefs

Zeros are A066207, counted by A035363.
The triangle for this rank statistic is A113685, without zeros A365067.
For count instead of sum we have A257991, even A257992.
Nonzeros are A366322, counted by A086543.
The even version is A366531, halved A366533, triangle A113686.
A000009 counts partitions into odd parts, ranks A066208.
A053253 = partitions with all odd parts and conjugate parts, ranks A352143.
A066967 adds up sums of odd parts over all partitions.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(OddQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366531(n).
Showing 1-10 of 77 results. Next