cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066260 In the prime factorization of n replace the k-th prime with the k-th composite number, k > 0.

Original entry on oeis.org

1, 4, 6, 16, 8, 24, 9, 64, 36, 32, 10, 96, 12, 36, 48, 256, 14, 144, 15, 128, 54, 40, 16, 384, 64, 48, 216, 144, 18, 192, 20, 1024, 60, 56, 72, 576, 21, 60, 72, 512, 22, 216, 24, 160, 288, 64, 25, 1536, 81, 256, 84, 192, 26, 864, 80, 576, 90, 72, 27, 768, 28, 80, 324
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 10 2001

Keywords

Examples

			a(10) = a(2*5) = a(prime(1)*prime(3)) = a(prime(1))*a(prime(3)) = comp(1)*comp(3) = 4 * 8 = 32.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local k; if n=1 then 4 else
          for k from 1+b(n-1) while isprime(k) do od; k fi
        end:
    a:= n-> mul(b(numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..63);  # Alois P. Heinz, Mar 21 2025
  • Mathematica
    nmax = 100;
    compos = Select[Range[FindRoot[n == nmax + PrimePi[n] + 1,
         {n, nmax, 2 nmax}][[1, 2]] // Floor], CompositeQ];
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; compos[[PrimePi[p]]]^e,
         {pe, FactorInteger[n]}]];
    Array[a, nmax] (* Jean-François Alcover, Nov 21 2021 *)
  • PARI
    Composite(n) = local(k); k=n + primepi(n) + 1; while (k != n + primepi(k) + 1, k = n + primepi(k) + 1); return(k)
    for (n=1, 1000, f=factor(n); a=1; for (i=1, matsize(f)[1], a*=Composite(primepi(f[i, 1]))^f[i, 2]); write("b066260.txt", n, " ", a) ) \\ Harry J. Smith, Feb 07 2010

Formula

Completely multiplicative with a(p) = A002808(A049084(p)), p prime.