cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066261 a(n) = A066260(A066260(n)).

Original entry on oeis.org

1, 16, 24, 256, 64, 384, 36, 4096, 576, 1024, 32, 6144, 96, 576, 1536, 65536, 36, 9216, 48, 16384, 864, 512, 256, 98304, 4096, 1536, 13824, 9216, 144, 24576, 128, 1048576, 768, 576, 2304, 147456, 54, 768, 2304, 262144, 40, 13824, 384, 8192, 36864, 4096
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 10 2001

Keywords

Comments

Completely multiplicative since A066260 is (iterates of completely multiplicative functions are too). - David W. Wilson, Jun 09 2005

Programs

  • PARI
    Composite(n) = local(k); k=n + primepi(n) + 1; while (k != n + primepi(k) + 1, k = n + primepi(k) + 1); return(k)
    for (n=1, 1000, f=factor(n); a=1; for (i=1, matsize(f)[1], a*=Composite(primepi(f[i, 1]))^f[i, 2]); f=factor(a); a=1; for (i=1, matsize(f)[1], a*=Composite(primepi(f[i, 1]))^f[i, 2]); write("b066261.txt", n, " ", a) ) \\ Harry J. Smith, Feb 07 2010

A066262 a(n) = gcd(n, A066260(n)).

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 27, 4, 1, 6, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 5, 8, 3, 2, 1, 12, 1, 2, 9, 64, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 81, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 3, 2, 5, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 10 2001

Keywords

Comments

Same as A065331 through a(54); A065331(55)=1, but a(55)=5. - Jon E. Schoenfield, Jan 28 2022

Crossrefs

Cf. A066260.
Different from A065331.

Programs

  • PARI
    Composite(n) = { my(k=n + primepi(n) + 1); while (k != n + primepi(k) + 1, k = n + primepi(k) + 1); return(k) }
    { for (n=1, 100, my(f=factor(n), a=1); for (i=1, matsize(f)[1], a*=Composite(primepi(f[i, 1]))^f[i, 2]); a=gcd(n, a); print1(a, ", ") ) } \\ Harry J. Smith, Feb 07 2010

A382265 In the prime factorization of n replace the k-th prime with the k-th nonprime number.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 16, 6, 9, 4, 10, 8, 24, 1, 12, 16, 14, 6, 32, 9, 15, 4, 36, 10, 64, 8, 16, 24, 18, 1, 36, 12, 48, 16, 20, 14, 40, 6, 21, 32, 22, 9, 96, 15, 24, 4, 64, 36, 48, 10, 25, 64, 54, 8, 56, 16, 26, 24, 27, 18, 128, 1, 60, 36, 28, 12, 60, 48, 30, 16, 32, 20, 144
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 19 2025

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local k; if n=1 then 1 else
          for k from 1+b(n-1) while isprime(k) do od; k fi
        end:
    a:= n-> mul(b(numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..75);  # Alois P. Heinz, Mar 21 2025
  • Mathematica
    nonPrime[n_] := FixedPoint[n + PrimePi@# &, n + PrimePi@ n]; (* Robert G. Wilson v at A018252 *)
    non[p_] := non[p] = nonPrime[PrimePi[p]]; f[p_, e_] := non[p]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 21 2025 *)

Formula

If n = Product prime(k)^e(k) then a(n) = Product nonprime(k)^e(k).
Showing 1-3 of 3 results.