A136556
a(n) = binomial(2^n - 1, n).
Original entry on oeis.org
1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
{a(n) = binomial(2^n-1,n)}
for(n=0, 20, print1(a(n), ", "))
-
/* As coefficient of x^n in the g.f.: */
{a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
-
[binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132683
a(n) = binomial(2^n + n, n).
Original entry on oeis.org
1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ...
A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1), this sequence (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132683:= n-> binomial(2^n +n,n); seq(A132683(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
a(n)=binomial(2^n+n,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132684
a(n) = binomial(2^n + n + 1, n).
Original entry on oeis.org
1, 4, 21, 220, 5985, 501942, 143218999, 145944307080, 542150225230185, 7398714129087308170, 372134605932348010322571, 69146263065062394421802892300, 47589861944854471977019273909187085
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 4*x + 21*x^2 + 220*x^3 + 5985*x^4 + 501942*x^5 +...
A(x) = 1/(1-x)^2 - log(1-2x)/(1-2x)^2 + log(1-4x)^2/((1-4x)^2*2!) - log(1-8x)^3/((1-8x)^2*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0), this sequence (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n+1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132684:= n-> binomial(2^n +n+1, n); seq(A132684(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n+1,n],{n,0,20}] (* Harvey P. Dale, Nov 10 2011 *)
-
a(n)=binomial(2^n+n+1,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))^2*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n+1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
Showing 1-3 of 3 results.
Comments