cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066412 Number of elements in the set phi_inverse(phi(n)).

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 2, 4, 6, 4, 5, 5, 6, 4, 4, 5, 6, 2, 2, 5, 5, 6, 4, 6, 2, 5, 2, 6, 5, 6, 10, 6, 8, 4, 10, 6, 9, 6, 4, 5, 10, 2, 2, 6, 4, 5, 7, 10, 2, 4, 9, 10, 8, 2, 2, 6, 9, 2, 8, 7, 11, 5, 2, 7, 3, 10, 2, 10, 17, 8, 9, 8, 9, 10, 2, 7, 2, 9, 2, 10, 8, 4, 3, 9, 6, 10, 17, 3, 9, 2, 17, 7
Offset: 1

Views

Author

Vladeta Jovovic, Dec 25 2001

Keywords

Examples

			invphi(6) = [7, 9, 14, 18], thus a(7) = a(9) = a(14) = a(18) = 4.
		

Crossrefs

Cf. A070305 (positions where coincides with A000005).

Programs

  • Maple
    nops(invphi(phi(n)));
  • Mathematica
    With[{nn = 120}, Function[s, Take[#, nn] &@ Values@ KeySort@ Flatten@ Map[Function[{k, m}, Map[# -> m &, k]] @@ {#, Length@ #} &@ Lookup[s, #] &, Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, nn^2 + 10]] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    for(n=1,150,print1(sum(i=1,10*n,if(n-eulerphi(n)-i+eulerphi(i),0,1)),",")) \\ By the original author(s). Note: the upper limit 10*n for the search range is quite ad hoc, and is guaranteed to miss some cases when n is large enough. Cf. Wikipedia-article. - Antti Karttunen, Jul 19 2017
    
  • PARI
    \\ Here is an implementation not using arbitrary limits:
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ M. F. Hasler, Oct 05 2009
    A066412(n) = A014197(eulerphi(n)); \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    a(n) = invphiNum(eulerphi(n)); \\ Amiram Eldar, Nov 14 2024, using Max Alekseyev's invphi.gp
    
  • Scheme
    ;; A naive implementation requiring precomputed A057826:
    (define (A066412 n) (if (<= n 2) 2 (let ((ph (A000010 n))) (let loop ((k (A057826 (/ ph 2))) (s 0)) (if (zero? k) s (loop (- k 1) (+ s (if (= ph (A000010 k)) 1 0)))))))) ;; Antti Karttunen, Jul 18 2017

Formula

a(n) = Card( k>0 : cototient(k)=cototient(n) ) where cototient(x) = x - phi(x). - Benoit Cloitre, May 09 2002
From Antti Karttunen, Jul 18 2017: (Start)
a(n) = A014197(A000010(n)).
For all n, a(n) <= A071181(n).
(End)