A066522 Numbers n whose divisors less than or equal to sqrt(n) are consecutive, from 1 up to some number k.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 22, 23, 24, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 60, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157
Offset: 1
Examples
60 = 1*60 = 2*30 = 3*20 = 4*15 = 5*12 = 6*10.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- J. G. van der Galien, The Dawn of Science.
Programs
-
Haskell
import Data.List (genericLength) a066522 n = a066522_list !! (n-1) a066522_list = filter f [1..] where f x = genericLength ds == maximum ds where ds = a161906_row x -- Reinhard Zumkeller, Jun 24 2015, Nov 14 2011
-
Mathematica
test[n_] := Module[{}, d=Divisors[n]; d=Take[d, Ceiling[Length[d]/2]]; Last[d]==Length[d]]; Select[Range[1, 200], test] cdQ[n_]:=Module[{d=Union[Differences[Select[Divisors[n],#<=Sqrt[n]&]]]},d=={}||d=={1}]; Select[Range[200],cdQ] (* Harvey P. Dale, Feb 12 2017 *)
-
PARI
{ n=0; for (m=1, 10^10, d=divisors(m); b=1; for (i=2, ceil(length(d)/2), if (d[i] - d[i-1] > 1, b=0; break)); if (b, write("b066522.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 21 2010
Extensions
Edited by Dean Hickerson, Jan 07 2002
Comments