A231091 Number of distinct (modulo rotation) unicursal star polygons (not necessarily regular, no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon.
0, 0, 0, 0, 1, 1, 5, 27, 175, 1533, 14361, 151575, 1735869, 21594863, 289365383, 4158887007, 63822480809, 1041820050629, 18027531255745, 329658402237171, 6352776451924233, 128686951765990343, 2733851297673484765, 60781108703102022027, 1411481990523638719737
Offset: 1
Examples
For n=5, only solution is the regular pentagram. For n=6, only solution is the unicursal hexagram (see Wikipedia link). For n=7, two regular heptagrams and three irregular forms are possible.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Stewart Gordon, The five possible stars for n=7 (SVG file)
- Wikipedia, Unicursal hexagram
Crossrefs
Programs
-
PARI
\\ Requires a370068 from A370068, b(n) is A283184. b(n)={subst(serlaplace(polcoef((1 - x)/(1 + (1 - 2*y)*x + 2*y*x^2) + O(x*x^n), n)), y, 1)} a(n)={(if(n%2==0 && n > 2, b(n/2-1)/2) + a370068(n))/2} \\ Andrew Howroyd, Mar 01 2024
Formula
a(n) = (A370068(n) + A283184(n/2-1)/2)/2 for even n >= 4; a(n) = A370068(n)/2 for odd n. - Andrew Howroyd, Feb 24 2024
Extensions
a(15) onwards from Andrew Howroyd, Feb 23 2024
Comments