A066524 a(n) = n*(2^n - 1).
0, 1, 6, 21, 60, 155, 378, 889, 2040, 4599, 10230, 22517, 49140, 106483, 229362, 491505, 1048560, 2228207, 4718574, 9961453, 20971500, 44040171, 92274666, 192937961, 402653160, 838860775, 1744830438, 3623878629, 7516192740, 15569256419, 32212254690
Offset: 0
Examples
a(4) = 4*(2^4 - 1) = 4*15 = 60.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..250
- A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, Journal of Integer Sequences, 14 (2011), #11.7.5.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
Magma
[n*(2^n-1): n in [0..30]]; // Vincenzo Librandi, Jan 24 2016
-
Mathematica
Table[n*2^n-n,{n,0,3*4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2010 *) CoefficientList[Series[x (1 - 2 x^2)/((1 - x) (1 - 2 x))^2, {x, 0, 30}], x] (* Michael De Vlieger, Jan 24 2016 *)
-
Sage
[gaussian_binomial(n,1,2)*n for n in range(0,29)] # Zerinvary Lajos, May 29 2009
Formula
G.f.: x*(1 - 2*x^2)/((1 - x)*(1 - 2*x))^2.
a(n) = n * Sum_{j = 1..n} binomial(n,j), n >= 0. - Zerinvary Lajos, May 10 2007
Row sums of triangles A132751. - Gary W. Adamson, Aug 28 2007
E.g.f.: x*(2*exp(2*x) - exp(x)). From an earlier rewritten comment. - Wolfdieter Lang, Feb 16 2016
Sum_{n>=1} 1/a(n) = A335764. - Amiram Eldar, Jun 23 2020
Comments