cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A117281 Palindromes whose squares belong to A066531.

Original entry on oeis.org

252, 2772, 20502, 23632, 25452, 26962, 27972, 48384, 225522, 252252, 259952, 279972, 619916, 1113111, 1226221, 1357531, 2005002, 2070702, 2126212, 2150512, 2216122, 2226222, 2249422, 2275722, 2316132, 2347432, 2386832, 2429242
Offset: 1

Views

Author

Lekraj Beedassy, Apr 23 2006

Keywords

Comments

a(n)^2 = A083408(k) for some k.

Examples

			27972 is in the sequence because 782432784 = 27972*27972 = 15984*48951.
1113111 is in the sequence because 1239016098321 = 1113111*1113111 = 1022121*1212201.
		

Crossrefs

Cf. A066531, A083408 (square EPRNs), A206642.

Extensions

Edited and corrected by Klaus Brockhaus, Aug 21 2007
Edited by N. J. A. Sloane, Aug 01 2019

A206642 Non-palindromes whose squares are in A066531.

Original entry on oeis.org

660, 2520, 4030, 5040, 6600, 8160, 25200, 27720, 32670, 40300, 43560, 50400, 66000, 81600, 205020, 229320, 236320, 254520, 269620, 277200, 279720, 310030, 326700, 329670, 351430, 410040, 435600, 439560, 458640, 483840, 486160
Offset: 1

Views

Author

Hans Havermann, Feb 11 2012

Keywords

Examples

			660 is in the sequence because 660^2 = 528*825 = 6600*0066; 2520 is in the sequence because 2520^2 = 14400*00441 = 25200*00252 = 44100*00144; etc.
		

Crossrefs

Cf. A066531, A083408 (square EPRNs), A117281 (palindromic version).

Extensions

Edited by N. J. A. Sloane, Aug 01 2019

A117282 Terms of A066531 not ending in 0.

Original entry on oeis.org

63504, 101556, 144648, 185472, 5166504, 5955264, 6794424, 7683984, 7812756, 8262306, 8856036, 9523696, 9949716, 10509408, 10865686, 11093796, 11768148, 11807208, 12494209, 13564768, 14201712, 15089472, 15449112, 16746912
Offset: 1

Views

Author

Lekraj Beedassy, Apr 23 2006

Keywords

Examples

			63504 = 144*441 = 252*252; 7812756 = 1236*6321 = 2163*3612.
		

References

  • S. S. Gupta, "EPRNs" in Science Today (Subsequently renamed '2001'), pp. 77, Feb 1987, Times of India, Mumbai.

Crossrefs

Cf. A066531 (EPRNs).

Extensions

Edited and corrected by Klaus Brockhaus, Aug 21 2007
Edited by N. J. A. Sloane, Aug 01 2019

A083408 Squares which can be expressed as the product of a number and its reversal in at least two different ways.

Original entry on oeis.org

63504, 435600, 6350400, 7683984, 16240900, 25401600, 43560000, 66585600, 420332004, 558471424, 635040000, 647804304, 726949444, 768398400, 782432784, 1067328900, 1624090000, 1897473600, 2341011456, 2540160000, 4356000000, 6658560000, 42033200400, 50860172484, 52587662400
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 07 2003

Keywords

Comments

Union of A083406 and A083407. - Lekraj Beedassy, Apr 23 2006

Examples

			63504 = 252 * 252 = 144 * 441,
1239016098321 = 1113111 * 1113111 = 1022121 * 1212201, etc.
635040000 = 144 * 4410000 = 252 * 2520000 = 441 * 1440000. - _David A. Corneth_, Mar 22 2019
		

References

  • S. S. Gupta, EPRNs, Science Today, Feb. 1987, India.

Crossrefs

Cf. A062917, A066531, A083406 (even), A083407 (odd), A070760, A117281 (palindromic square roots), A206642 (non-palindromic square roots), A325150 (products in exactly two different ways), A307019 (products in exactly three different ways).

Programs

  • PARI
    is(n) = {if(!issquare(n), return(0)); my(d = divisors(n), t = 0); forstep(i = #d, #d \ 2 + 1, -1, revd = fromdigits(Vecrev(digits(d[i]))); if(revd * d[i] == n, t++; if(t >= 2, return(1)); ) ); 0 } \\ David A. Corneth, Mar 21 2019

Extensions

Corrected and extended by Hans Havermann, Feb 11 2012
a(21)-a(25) from David A. Corneth, Mar 21 2019
Definition corrected by N. J. A. Sloane, Aug 01 2019

A083406 Even squares which can be expressed as the product of a number and its reversal in at least two different ways.

Original entry on oeis.org

63504, 435600, 6350400, 7683984, 16240900, 25401600, 43560000, 66585600, 420332004, 558471424, 635040000, 647804304, 726949444, 768398400, 782432784, 1067328900, 1624090000, 1897473600, 2341011456, 2540160000
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 07 2003

Keywords

Comments

For n=1..49 identical to A083408.

Examples

			63504 = 252 * 252 = 144 * 441, 7683984 = 2772 * 2772 = 1584 * 4851, etc.
		

References

  • S. S. Gupta, EPRNs, Science Today, Feb. 1987, India.

Crossrefs

Cf. A031877, A066531, A083407 (odd squares version), A083408 (all squares version).

Extensions

Corrected and extended by Hans Havermann, Feb 11 2012
Definition corrected by N. J. A. Sloane, Aug 01 2019

A083407 Odd squares which can be expressed as the product of a number and its reversal in at least two different ways.

Original entry on oeis.org

1239016098321, 1503617940841, 1842890415961, 11151144884889, 12909311260209, 149920947896841, 181937770841761, 12128839583882121, 12598313930168521, 12639203218972521, 13081277143774921, 14462953695004441, 14999934809556841, 15260975534573041
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 07 2003

Keywords

Examples

			1239016098321 = 1113111 * 1113111 = 1022121 * 1212201, etc.
		

References

  • S. S. Gupta, EPRNs, Science Today, Feb. 1987, India.

Crossrefs

Cf. A066531, A083406 (even squares version), A083408 (all squares version).

Extensions

Corrected by Hans Havermann, Feb 13 2012
a(4)-a(14) (including four found by Hans Havermann) from Donovan Johnson, Feb 18 2012
Definition corrected by N. J. A. Sloane, Aug 01 2019

A346133 Numbers N = A * B such that N (reversed digits) = A (reversed digits) * B (reversed digits). A single-digit number is its own reversal and neither A nor B has a leading zero. No pair (A, B) has both A and B palindromic or simple-digit. The reversed products are not included in the sequence.

Original entry on oeis.org

24, 26, 28, 36, 39, 46, 48, 68, 69, 132, 143, 144, 154, 156, 165, 168, 169, 176, 187, 198, 204, 206, 208, 224, 226, 228, 244, 246, 248, 252, 253, 264, 266, 268, 273, 275, 276, 284, 286, 288, 294, 297, 299, 306, 309, 336, 339, 366, 369, 374, 384, 385, 396, 399
Offset: 1

Views

Author

Eric Angelini and Carole Dubois, Jul 05 2021

Keywords

Examples

			a(1) = 24 = 2 * 12 and 2 * 21 = 42 (which is 24 reversed);
a(2) = 26 = 2 * 13 and 2 * 31 = 62 (which is 26 reversed);
a(3) = 28 = 2 * 14 and 2 * 41 = 82 (which is 28 reversed);
a(4) = 36 = 3 * 12 and 3 * 21 = 63 (which is 36 reversed); etc.
		

Crossrefs

Cf. A066531.

Programs

  • Mathematica
    q[n_] := IntegerReverse[n] >= n && AnyTrue[Rest @ Take[(d = Divisors[n]), Ceiling[Length[d]/2]], (# > 9 || n/# > 9) && !Divisible[#, 10] && !Divisible[n/#, 10] && (!PalindromeQ[#] || !PalindromeQ[n/#]) && IntegerReverse[#] * IntegerReverse[n/#] == IntegerReverse[n] &]; Select[Range[2, 400], q] (* Amiram Eldar, Jul 07 2021 *)
  • Python
    from sympy import divisors
    def rev(n): return int(str(n)[::-1])
    def ok(n):
        divs = divisors(n)
        for a in divs[1:(len(divs)+1)//2]:
            b = n // a
            reva, revb, revn = rev(a), rev(b), rev(n)
            if revn < n or a%10 == 0 or b%10 == 0: continue
            if (reva != a or revb != b) and revn == reva * revb: return True
        return False
    print(list(filter(ok, range(400)))) # Michael S. Branicky, Jul 06 2021

A066598 Numbers which can be expressed as the product of a number and its reversal in four different ways.

Original entry on oeis.org

1015560, 1446480, 1854720, 10155600, 14464800, 18547200, 51665040, 59552640, 67944240, 78127560, 82623060, 88560360, 95236960, 99497160, 101556000, 105094080, 108656860, 110937960, 117681480, 118072080, 124942090, 135647680
Offset: 1

Views

Author

Robert G. Wilson v, Jan 08 2002

Keywords

Crossrefs

Cf. A066531.

Programs

  • Mathematica
    f[n_] := (m = ToExpression[StringReverse[ToString[n]]]; If[n > m, n*m, 0]); a = Sort[ Table[ f[n], {n, 0, 10^6}]]; While[ a[[1]] == 0, a = Drop[a, 1]]; a[[ Select[ Range[ Length[a]] - 3, a[[ # ]] == a[[ # + 3 ]] & ]]]

A346219 Base-10 numbers k such that k can be written as k = A * B and R(k) = R(A) * R(B) in six or more bases, from base 2 to base 10, and where R(k), the digit reversal of k, is read as a number in the same base.

Original entry on oeis.org

1122, 17875, 65331, 367598, 818545, 1997905, 43998955, 100383283, 112887775, 112977865, 145683265, 230034805, 5231187650
Offset: 1

Views

Author

Keywords

Comments

This is a variation of the sequence A346133. Similar rules are used to determine the allowed values of A and B - neither number can have a leading 0, and both cannot be palindromes. However the reverse of k may appear as in general any solutions for k and R(k) will occur in different bases.
This sequence lists those base-10 numbers that meet these criteria in six or more bases, from base 2 to base 10. Note that, although k must stay the same when written in the different bases, the values of A and B need not be the same. Only the product of the chosen two factors and their reverses must equal k and R(k) in the given bases. See the example below and the linked data file.
No numbers are currently known that have solutions in seven or more bases. Assuming a(13) exists it is greater than 10^9.

Examples

			1122 is a term as k = A * B and R(k) = R(A) * R(B) has solutions in the six bases 4,5,7,8,9,10. See the table below for k = 1122.
.
      base   | k_base | A_base * B_base | R(k_base) | R(A_base) * R(B_base)
  =========================================================================
       4     | 101202 |    101 * 1002   |  202101   |       101 * 2001
  in base 10 |   1122 |     17 * 66     |    2193   |        17 * 129
  ------------------------------------------------------------------------
       5     |  13442 |      3 * 2444   |   24431   |         3 * 4442
  in base 10 |   1122 |      3 * 374    |    1866   |         3 * 622
  ------------------------------------------------------------------------
       7     |   3162 |     31 * 102    |    2613   |        13 * 201
  in base 10 |   1122 |     22 * 51     |     990   |        10 * 99
  -------------------------------------------------------------------------
       8     |   2142 |     21 * 102    |    2412   |        12 * 201
  in base 10 |   1122 |     17 * 66     |    1290   |        10 * 129
  -------------------------------------------------------------------------
       9     |   1476 |     12 * 123    |    6741   |        21 * 321
  in base 10 |   1122 |     11 * 102    |    4978   |        19 * 262
  -------------------------------------------------------------------------
      10     |   1122 |     11 * 102    |    2211   |        11 * 201
.
The bases used in the twelve terms below 10^9 are as follows:
.
         k    |       bases
  --------------------------------
        1122  |  4, 5, 7, 8, 9, 10
       17875  |  2, 3, 4, 6, 8, 10
       65331  |  2, 4, 5, 6, 8, 10
      367598  |  3, 4, 6, 8, 9, 10
      818545  |  2, 3, 4, 6, 8,  9
     1997905  |  2, 3, 4, 6, 8,  9
    43998955  |  2, 3, 4, 8, 9, 10
   100383283  |  2, 3, 4, 6, 9, 10
   112887775  |  2, 3, 4, 8, 9, 10
   112977865  |  2, 3, 4, 8, 9, 10
   145683265  |  2, 3, 4, 6, 8,  9
   230034805  |  2, 3, 4, 6, 8,  9
.
		

Crossrefs

Extensions

a(13) from Michael S. Branicky, Jun 21 2023

A083405 Odd numbers which can be expressed as the product of a number and its reversal in at least two different ways.

Original entry on oeis.org

12494209, 448583733, 494167063, 547084993, 851529915, 1191394449, 1213031209, 1338416599, 1343524977, 1464607989, 2064820905, 34509780333, 36738861453, 38016529663, 39118059873, 40127419683, 42087533593, 43093084603, 43754503723, 43948961613
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 07 2003

Keywords

Examples

			12494209 = 13143 * 34131 = 31341 * 14313, 1191394449 = 12369 * 96321 = 30783 * 38707, etc.
		

References

  • S. S. Gupta, EPRNs, Science Today, Feb. 1987, India.

Crossrefs

Cf. A066531.

Extensions

More terms from Hans Havermann, Feb 11 2012
Definition corrected by N. J. A. Sloane, Aug 01 2019
Showing 1-10 of 15 results. Next