cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229289 Primes p of the form p = 2^k * m + 1, where (i) m is squarefree and odd, (ii) all primes that divide m are in the sequence, and (iii) k is 0, 1, or 2.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 79, 107, 131, 139, 157, 173, 211, 263, 269, 277, 283, 311, 317, 331, 347, 349, 367, 373, 421, 431, 461, 463, 547, 557, 599, 643, 659, 661, 683, 691, 709, 733, 743, 787, 827, 853, 859, 863, 911, 941
Offset: 1

Views

Author

Keywords

Comments

Taking m=1 in the definition we get the primes 2, 3, 5.
If n is in A226960, then n is a product of terms of this sequence.
If k is only allowed to be 0 or 1, we get 2, 3, 7, 43 and no more. - Jianing Song, Feb 21 2021
Also prime factors of terms in A341858. It is conjectured that this sequence is infinite. - Jianing Song, Feb 22 2021

Crossrefs

For the complement, see A289355.
Proper subsequence of A066651.

Programs

  • Mathematica
    fa = FactorInteger; free[n_] := n == Product[fa[n][[i, 1]], {i, Length[fa[n]]}] ; Os[b_, 1] = True; Os[b_, b_] = True; Os[b_, n_] := Os[b, n] = PrimeQ[n] && free[(n - 1)/b^IntegerExponent[n - 1, b]] &&IntegerExponent[n - 1, b] < 3 && Union@Table[Os[b, fa[n - 1][[i, 1]]], {i, Length[fa[n - 1]]}] == {True};G[b_] := Select[Prime[Range[1000]], Os[b, #] &];G[2]
  • PARI
    is(n)=if(!isprime(n),return(0)); if(n<13,return(1)); my(k=valuation(n-1,2), m=n>>k, f); if(k>2,return(0)); f=factor(m); if(lcm(f[,2])>1, return(0)); for(i=1,#f~, if(!is(f[i,1]), return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2013

Extensions

Revised definition from Charles R Greathouse IV, Nov 13 2013
Terms corrected by José María Grau Ribas, Nov 14 2013

A066653 Squarefree numbers k such that the pair 2*k +- 1 is a twin prime pair.

Original entry on oeis.org

2, 3, 6, 15, 21, 30, 51, 69, 114, 141, 174, 210, 231, 285, 309, 321, 330, 411, 429, 510, 546, 615, 645, 651, 714, 741, 834, 849, 861, 894, 939, 966, 1041, 1065, 1119, 1155, 1191, 1329, 1365, 1401, 1626, 1686, 1695, 1731, 1770
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 10 2002

Keywords

Examples

			2*a(6) +/- 1 = 2*30 +/- 1 = (59, 61) = (A000040(17), A000040(18)) = (A001359(7), A006512(7)) = (A066652(10), A066651(13)).
		

Crossrefs

Programs

  • Magma
    [k:k in [1..2000]|IsSquarefree(k) and IsPrime(2*k-1) and IsPrime(2*k+1)]; // Marius A. Burtea, Dec 19 2019
    
  • Mathematica
    Select[Range[2000], SquareFreeQ[#] && And @@ PrimeQ[2# + {-1, 1}] &] (* Amiram Eldar, Dec 19 2019 *)
  • PARI
    isok(k) = issquarefree(k) && isprime(2*k-1) && isprime(2*k+1); \\ Michel Marcus, Jul 25 2022

Formula

a(n) = 3*A355846(n-1), for n >= 2. - Wesley Ivan Hurt, Jul 24 2022

A066652 Primes of the form 2*s - 1, where s is a squarefree number (A005117).

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 41, 43, 59, 61, 67, 73, 83, 101, 109, 113, 131, 137, 139, 157, 163, 173, 181, 193, 211, 227, 229, 257, 277, 281, 283, 307, 313, 317, 331, 347, 353, 373, 379, 389, 397, 401, 409, 419, 421, 433, 443, 457
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 10 2002

Keywords

Examples

			a(10) = A000040(17) = 59 = 2*30-1 = 2*A005117(19)-1.
		

Crossrefs

Programs

  • Mathematica
    Select[2 * Select[Range[200], SquareFreeQ] - 1, PrimeQ] (* Amiram Eldar, Feb 22 2021 *)
Showing 1-3 of 3 results.