cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066729 a(n) = Product_{d|n, d

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 144, 13, 14, 15, 64, 17, 324, 19, 400, 21, 22, 23, 13824, 5, 26, 27, 784, 29, 27000, 31, 1024, 33, 34, 35, 279936, 37, 38, 39, 64000, 41, 74088, 43, 1936, 2025, 46, 47, 5308416, 7, 2500, 51, 2704, 53, 157464, 55, 175616, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 15 2002

Keywords

Comments

a(n) = n if n is prime, otherwise a(n) = A007956(n);
a(A084116(n)) = A084116(n).

Crossrefs

Programs

  • Haskell
    a066729 n = if pds == [1] then n else product pds
                where pds = a027751_row n
    -- Reinhard Zumkeller, Jul 31 2014
    
  • Mathematica
    a[1] = 1; a[n_ /; PrimeQ[n]] := n; a[n_] := Times @@ Most[Divisors[n]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 28 2015 *)
    Table[If[CompositeQ[n],Times@@Most[Divisors[n]],n],{n,60}] (* Harvey P. Dale, Jun 24 2016 *)
  • PARI
    a(n) = my(pd = vecprod(divisors(n))); if (isprime(n), pd, pd/n); \\ Michel Marcus, Jan 09 2021

Formula

a(n) = n^c(n) * ( Product_{d|n, dA010051). - Wesley Ivan Hurt, Jan 10 2021

Extensions

Revised and data corrected by Reinhard Zumkeller, Jul 31 2014