cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066766 Decimal expansion of Sum_{k>=1} sigma(k)/2^k where sigma(k) is the sum of divisors of k, 1 <= d <= k.

Original entry on oeis.org

2, 7, 4, 4, 0, 3, 3, 8, 8, 8, 7, 5, 9, 4, 8, 8, 3, 6, 0, 4, 8, 0, 2, 1, 4, 8, 9, 1, 4, 9, 2, 2, 7, 2, 1, 6, 4, 3, 1, 1, 4, 2, 8, 9, 8, 1, 3, 1, 9, 6, 3, 9, 3, 1, 7, 8, 4, 8, 5, 2, 8, 8, 8, 4, 7, 3, 7, 9, 1, 2, 2, 8, 3, 2, 6, 3, 8, 9, 5, 6, 8, 8, 5, 6, 6, 2, 5, 2, 3, 1, 0, 7, 1, 2, 5, 0, 6, 8, 8, 7, 7, 3, 7, 4, 0
Offset: 1

Views

Author

Randall L Rathbun, Jan 16 2002

Keywords

Examples

			2.74403388875948836048021489149227216431142898131963931784...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Maple
    evalf( add( (1/2)^(n^2) * (n*(4^n - 1) + 2^n)/(2^n - 1)^2, n = 1..20), 100); # Peter Bala, Jan 19 2021
  • Mathematica
    RealDigits[Sum[n/(2^n - 1), {n, 1, 500}], 10, 100][[1]] (* Amiram Eldar, Jun 22 2020 *)
  • PARI
    smv(v)= s=0; for(i=1,matsize(v)[2],s=s+v[i]); s
    A066766(n)= sm=0; for(j=1,n,sm=sm+smv(divisors(j)/2^j)); sm*1.0
    
  • PARI
    suminf(k=1, sigma(k)/2^k) \\ Michel Marcus, Apr 27 2018

Formula

Equals Sum_{k>=1} k/(2^k - 1). - Amiram Eldar, Jun 22 2020
Faster converging series: Sum_{n >= 1} (1/2)^(n^2) * (n*(4^n - 1) + 2^n)/(2^n - 1)^2. - Peter Bala, Jan 19 2021
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} 2^k/(2^k - 1)^2.
Equals A065442 + A065443. (End)

Extensions

Name corrected by Paul D. Hanna, Apr 26 2018