A066771 a(n) = 5^n*cos(2*n*arctan(1/2)) or denominator of tan(2*n*arctan(1/2)).
1, 3, -7, -117, -527, -237, 11753, 76443, 164833, -922077, -9653287, -34867797, 32125393, 1064447283, 5583548873, 6890111163, -98248054847, -761741108157, -2114245277767, 6358056037323, 91004468168113, 387075408075603, 47340744250793, -9392840736385317
Offset: 0
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Marc Renault, The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m, Math. Mag. 86 (2013) pp. 372-380.
- Index entries for linear recurrences with constant coefficients, signature (6,-25).
Crossrefs
Cf. A066770 5^n sin(2n arctan(1/2)), A000351 powers of 5 and also hypotenuse of right triangle with legs given by A066770 and A066771.
Note that A066770, A066771 and A000351 are primitive Pythagorean triples with hypotenuse 5^n. The offset of A000351 is 0, but the offset is 1 for A066770, A066771.
Cf. A093378.
Cf. A139030.
Programs
-
Maple
a[1] := 4/3; for n from 1 to 40 do a[n+1] := (4/3+a[n])/(1-4/3*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(1/2))
-
Mathematica
CoefficientList[Series[(1-3x)/(1-6x+25x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-25},{1,3},30] (* Harvey P. Dale, Jul 16 2011 *)
-
PARI
a(n)=real((2+I)^(2*n))
Formula
G.f.: ( 1-3*x ) / ( 1-6*x+25*x^2 ).
A recursive formula for T(n) = tan(2*n*arctan(1/2)) is T(n+1) = (4/3 + T(n))/(1 - (4/3)*T(n)). Unsigned A(n) is the absolute value of the denominator of T(n).
a(n) is the real part of (2+i)^(2n) = Sum_{k=0..n} 4^(n-k)*(-1)^k*C(2n, 2k). - Benoit Cloitre, Aug 03 2002
a(n) = real part of (3 + 4i)^n. - Gary W. Adamson, Aug 06 2006
a(n) = 6*a(n-1) - 25*a(n-2). - Gary Detlefs, Jun 10 2010
a(n) = 5^n*cos(n*arccos(3/5)). - Gary Detlefs, Dec 11 2010
a(n) = (-1)^n * hypergeom([1,-n,1/2-n],[1/2,1],-4). - Gerry Martens, Jul 28 2023
Comments