A066770
a(n) = 5^n*sin(2n*arctan(1/2)) or numerator of tan(2n*arctan(1/2)).
Original entry on oeis.org
4, 24, 44, -336, -3116, -10296, 16124, 354144, 1721764, 1476984, -34182196, -242017776, -597551756, 2465133864, 29729597084, 116749235904, -42744511676, -3175197967656, -17982575014036, -28515500892816, 278471369994004, 2383715742284424, 7340510203856444
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (6,-25).
-
a[1] := 4/3; for n from 1 to 40 do a[n+1] := (4/3+a[n])/(1-4/3*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(1/2))
-
Table[ 5^n*Sin[2*n*ArcCot[2]] // Simplify, {n, 1, 23}] (* Jean-François Alcover, Mar 04 2013 *)
-
a(n)=imag((2+I)^(2*n))
A139030
Real part of (4 + 3i)^n.
Original entry on oeis.org
1, 4, 7, -44, -527, -3116, -11753, -16124, 164833, 1721764, 9653287, 34182196, 32125393, -597551756, -5583548873, -29729597084, -98248054847, -42744511676, 2114245277767, 17982575014036, 91004468168113, 278471369994004, -47340744250793, -7340510203856444, -57540563024581727
Offset: 0
a(5) = -3116 since (4 + 3i)^5 = (-3116 - 237i) where -237 = A139031(5).
-
a:= n-> Re((4+3*I)^n):
seq(a(n), n=0..24); # Alois P. Heinz, Oct 15 2024
-
Re[(4+3I)^Range[40]] (* or *) LinearRecurrence[{8,-25},{4,7},40] (* Harvey P. Dale, Nov 09 2011 *)
A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
{a, b, c} = {3, 4, 5};
Table[TrigExpand[5^n Cos[n (A[b, c, a] - A[c, a, b])]], {n, 0, 50}] (* Clark Kimberling, Oct 02 2024 *)
A121622
Real part of (3 + 2i)^n.
Original entry on oeis.org
1, 3, 5, -9, -119, -597, -2035, -4449, -239, 56403, 341525, 1315911, 3455641, 3627003, -23161315, -186118929, -815616479, -2474152797, -4241902555, 6712571031, 95420159401, 485257533003, 1671083125805, 3718150825791, 584824319281
Offset: 0
a(5) = -597 since (3 + 2i)^5 = (-597 + 122i).
a(5) = -597 = 6*(-119) - 13*(-9) = 6*a(5) -13*a(4).
- Michael De Vlieger, Table of n, a(n) for n = 0..500
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Index entries for linear recurrences with constant coefficients, signature (6,-13).
-
f[n_] := Re[(3 + 2I)^n]; Table[f[n], {n, 0, 24}] (* Robert G. Wilson v, Aug 17 2006 *)
LinearRecurrence[{6,-13},{1,3},30] (* Harvey P. Dale, Apr 24 2017 *)
-
a(n) = real((3 + 2*I)^n); \\ Michel Marcus, Jun 12 2021
A067360
a(n) = 17^n sin(2n arctan(1/4)) or numerator of tan(2n arctan(1/4)).
Original entry on oeis.org
8, 240, 4888, 77280, 905768, 4839120, -116593352, -4896306240, -113193708472, -1980778750800, -26710380775592, -228866364286560, 853309115549288, 91741652745294480, 2505643247965090168, 48655959795562600320, 735547895204966951048
Offset: 1
Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (30, -289).
Cf.
A067361 (17^n cos(2n arctan(1/4))).
-
a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(1/4))
-
Table[Tan[2n ArcTan[1/4]] // TrigToExp // Simplify // Numerator, {n, 1, 17} ] (* Jean-François Alcover, Jul 25 2017 *)
A067361
a(n) = 17^n*cos(2*n*arctan(1/4)) or denominator of tan(2*n*arctan(1/4)).
Original entry on oeis.org
15, 161, 495, -31679, -1093425, -23647519, -393425745, -4968639359, -35359140465, 375162560801, 21473668418415, 535788072480961, 9867752001506895, 141189807098209121, 1383913884510780975, 713562283940993281, -378544244105385903345
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (30, -289).
Cf.
A067360 (17^n sin(2n arctan(1/4))).
-
a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(1/4))
-
Table[t = Tan[2 n ArcTan[1/4]] // TrigToExp // Simplify; Sign[t] * Denominator[t], {n, 1, 17}] (* Jean-François Alcover, Jul 25 2017 *)
A067358
Imaginary part of (5+12i)^n.
Original entry on oeis.org
0, 12, 120, -828, -28560, -145668, 3369960, 58317492, 13651680, -9719139348, -99498527400, 647549275812, 23290743888720, 123471611274972, -2701419604443960, -47880898349909868, -22269070348069440, 7869181117654073292, 82455284065364468280, -505338768229893703548
Offset: 0
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (10,-169).
Cf.
A067359 (13^n cos(2n arctan(2/3))).
-
a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
-
Im[(5 + 12*I)^Range[0, 24]] (* or *)
LinearRecurrence[{10, -169}, {0, 12}, 25] (* Paolo Xausa, Apr 22 2024 *)
-
a(n)=imag((5+12*I)^n)
A067359
Real part of (5 + 12i)^n.
Original entry on oeis.org
1, 5, -119, -2035, -239, 341525, 3455641, -23161315, -815616479, -4241902555, 95420159401, 1671083125805, 584824319281, -276564805068235, -2864483360640839, 18094618450123325, 665043872449535041, 3592448206424508485, -76467932379726337079, -1371803070683005304755
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (10, -169).
Cf.
A067358 (13^n sin(2n arctan(2/3))).
-
a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
-
Table[Re[(5+12I)^n],{n,0,20}] (* Harvey P. Dale, Aug 24 2014 *)
-
a(n)=real((5+12*I)^n)
Original entry on oeis.org
1, 4, 1, 144, 361, 484, 19321, 28224, 128881, 2427364, 1745041, 26501904, 285643801, 64995844, 4675961161, 31354493184, 149793121, 741117817924, 3178942795681, 545370434064, 107989070784841, 292105630845604
Offset: 1
-
I:=[1,4,1]; [n le 3 select I[n] else -Self(n-1) +5*Self(n-2) +125*Self(n-3): n in [1..41]]; // G. C. Greubel, Jan 11 2024
-
LinearRecurrence[{-1,5,125}, {1,4,1}, 40] (* G. C. Greubel, Jan 11 2024 *)
-
Vec((x+5*x^2)/(1+x-5*x^2-125*x^3) + O(x^30)) \\ Michel Marcus, Aug 28 2015
-
@CachedFunction
def a(n): # a = A094423
if (n<4): return (0,1,4,1)[n]
else: return -a(n-1) + 5*a(n-2) + 125*a(n-3)
[a(n) for n in range(1,41)] # G. C. Greubel, Jan 11 2024
A193410
Expansion of (1-3*x)/(1-6*x+18*x^2).
Original entry on oeis.org
1, 3, 0, -54, -324, -972, 0, 17496, 104976, 314928, 0, -5668704, -34012224, -102036672, 0, 1836660096, 11019960576, 33059881728, 0, -595077871104, -3570467226624, -10711401679872, 0, 192805230237696, 1156831381426176, 3470494144278528
Offset: 0
-
m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)/(1-6*x+18*x^2))); /* or */ &cat[[r,3*r,0,-54*r] where r is (-324)^n: n in [0..6]];
-
I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)-18*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 26 2013
-
CoefficientList[Series[(1 - 3 x)/(1 - 6 x + 18 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{6,-18},{1,3},40] (* Harvey P. Dale, Jul 27 2021 *)
-
makelist(coeff(taylor((1-3*x)/(1-6*x+18*x^2), x, 0, n), x, n), n, 0, 25);
-
Vec((1-3*x)/(1-6*x+18*x^2) +O(x^26))
A093378
a(n) = numerator of any non-diagonal entry of the matrix A^n, where A is described in the Comments lines.
Original entry on oeis.org
2, 12, 22, 168, 1558, 5148, 8062, 177072, 860882, 738492, 121008888, 298775878, 1232566932, 14864798542, 58374617952
Offset: 1
Showing 1-10 of 13 results.
Comments