A067361
a(n) = 17^n*cos(2*n*arctan(1/4)) or denominator of tan(2*n*arctan(1/4)).
Original entry on oeis.org
15, 161, 495, -31679, -1093425, -23647519, -393425745, -4968639359, -35359140465, 375162560801, 21473668418415, 535788072480961, 9867752001506895, 141189807098209121, 1383913884510780975, 713562283940993281, -378544244105385903345
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (30, -289).
Cf.
A067360 (17^n sin(2n arctan(1/4))).
-
a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(1/4))
-
Table[t = Tan[2 n ArcTan[1/4]] // TrigToExp // Simplify; Sign[t] * Denominator[t], {n, 1, 17}] (* Jean-François Alcover, Jul 25 2017 *)
A067358
Imaginary part of (5+12i)^n.
Original entry on oeis.org
0, 12, 120, -828, -28560, -145668, 3369960, 58317492, 13651680, -9719139348, -99498527400, 647549275812, 23290743888720, 123471611274972, -2701419604443960, -47880898349909868, -22269070348069440, 7869181117654073292, 82455284065364468280, -505338768229893703548
Offset: 0
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (10,-169).
Cf.
A067359 (13^n cos(2n arctan(2/3))).
-
a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
-
Im[(5 + 12*I)^Range[0, 24]] (* or *)
LinearRecurrence[{10, -169}, {0, 12}, 25] (* Paolo Xausa, Apr 22 2024 *)
-
a(n)=imag((5+12*I)^n)
A067359
Real part of (5 + 12i)^n.
Original entry on oeis.org
1, 5, -119, -2035, -239, 341525, 3455641, -23161315, -815616479, -4241902555, 95420159401, 1671083125805, 584824319281, -276564805068235, -2864483360640839, 18094618450123325, 665043872449535041, 3592448206424508485, -76467932379726337079, -1371803070683005304755
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (10, -169).
Cf.
A067358 (13^n sin(2n arctan(2/3))).
-
a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
-
Table[Re[(5+12I)^n],{n,0,20}] (* Harvey P. Dale, Aug 24 2014 *)
-
a(n)=real((5+12*I)^n)
Showing 1-3 of 3 results.
Comments