cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067360 a(n) = 17^n sin(2n arctan(1/4)) or numerator of tan(2n arctan(1/4)).

Original entry on oeis.org

8, 240, 4888, 77280, 905768, 4839120, -116593352, -4896306240, -113193708472, -1980778750800, -26710380775592, -228866364286560, 853309115549288, 91741652745294480, 2505643247965090168, 48655959795562600320, 735547895204966951048
Offset: 1

Views

Author

Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Jan 17 2002

Keywords

Comments

Note that A067360(n), A067361(n) and 17^n are primitive Pythagorean triples with hypotenuse 17^n.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.

Crossrefs

Cf. A067361 (17^n cos(2n arctan(1/4))).

Programs

  • Maple
    a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(1/4))
  • Mathematica
    Table[Tan[2n ArcTan[1/4]] // TrigToExp // Simplify // Numerator, {n, 1, 17} ] (* Jean-François Alcover, Jul 25 2017 *)

Formula

a(n) = 17^n sin(2n arctan(1/4)). A recursive formula for T(n) = tan(2n arctan(1/4)) is T(n+1)=(8/15+T(n))/(1-8/15*T(n)). Unsigned a(n) is the absolute value of numerator of T(n).
Conjectures from Colin Barker, Jul 25 2017: (Start)
G.f.: 8*x / (1 - 30*x + 289*x^2).
a(n) = i*((15 - 8*i)^n - (15 + 8*i)^n)/2 where i=sqrt(-1).
a(n) = 30*a(n-1) - 289*a(n-2) for n>2.
(End)

A067358 Imaginary part of (5+12i)^n.

Original entry on oeis.org

0, 12, 120, -828, -28560, -145668, 3369960, 58317492, 13651680, -9719139348, -99498527400, 647549275812, 23290743888720, 123471611274972, -2701419604443960, -47880898349909868, -22269070348069440, 7869181117654073292, 82455284065364468280, -505338768229893703548
Offset: 0

Views

Author

Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002

Keywords

Comments

Also 13^n sin(2n arctan(2/3)) or numerator of tan(2n arctan(2/3)).
Note that a(n), A067359(n) and 13^n are primitive Pythagorean triples with hypotenuse 13^n.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.

Crossrefs

Cf. A067359 (13^n cos(2n arctan(2/3))).

Programs

  • Maple
    a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
  • Mathematica
    Im[(5 + 12*I)^Range[0, 24]] (* or *)
    LinearRecurrence[{10, -169}, {0, 12}, 25] (* Paolo Xausa, Apr 22 2024 *)
  • PARI
    a(n)=imag((5+12*I)^n)

Formula

G.f.: 12*x/(1-10*x+169*x^2). a(n)=10*a(n-1)-169*a(n-2). - Michael Somos, Jun 27 2002

Extensions

Better description from Michael Somos, Jun 27 2002

A067359 Real part of (5 + 12i)^n.

Original entry on oeis.org

1, 5, -119, -2035, -239, 341525, 3455641, -23161315, -815616479, -4241902555, 95420159401, 1671083125805, 584824319281, -276564805068235, -2864483360640839, 18094618450123325, 665043872449535041, 3592448206424508485, -76467932379726337079, -1371803070683005304755
Offset: 1

Views

Author

Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002

Keywords

Comments

Also 13^n*cos(2*n*arctan(2/3)) or denominator of tan(2*n*arctan(2/3)).
Note that A067358(n), a(n) and 13^n are primitive Pythagorean triples with hypotenuse 13^n.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.

Crossrefs

Cf. A067358 (13^n sin(2n arctan(2/3))).

Programs

  • Maple
    a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
  • Mathematica
    Table[Re[(5+12I)^n],{n,0,20}] (* Harvey P. Dale, Aug 24 2014 *)
  • PARI
    a(n)=real((5+12*I)^n)

Formula

From Michael Somos, Jun 27 2002: (Start)
G.f.: (1-5*x)/(1-10*x+169*x^2).
a(n) = 10*a(n-1) - 169*a(n-2). (End)

Extensions

Better description from Michael Somos, Jun 27 2002
Showing 1-3 of 3 results.