A066771
a(n) = 5^n*cos(2*n*arctan(1/2)) or denominator of tan(2*n*arctan(1/2)).
Original entry on oeis.org
1, 3, -7, -117, -527, -237, 11753, 76443, 164833, -922077, -9653287, -34867797, 32125393, 1064447283, 5583548873, 6890111163, -98248054847, -761741108157, -2114245277767, 6358056037323, 91004468168113, 387075408075603, 47340744250793, -9392840736385317
Offset: 0
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Marc Renault, The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m, Math. Mag. 86 (2013) pp. 372-380.
- Index entries for linear recurrences with constant coefficients, signature (6,-25).
-
a[1] := 4/3; for n from 1 to 40 do a[n+1] := (4/3+a[n])/(1-4/3*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(1/2))
-
CoefficientList[Series[(1-3x)/(1-6x+25x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-25},{1,3},30] (* Harvey P. Dale, Jul 16 2011 *)
-
a(n)=real((2+I)^(2*n))
A139030
Real part of (4 + 3i)^n.
Original entry on oeis.org
1, 4, 7, -44, -527, -3116, -11753, -16124, 164833, 1721764, 9653287, 34182196, 32125393, -597551756, -5583548873, -29729597084, -98248054847, -42744511676, 2114245277767, 17982575014036, 91004468168113, 278471369994004, -47340744250793, -7340510203856444, -57540563024581727
Offset: 0
a(5) = -3116 since (4 + 3i)^5 = (-3116 - 237i) where -237 = A139031(5).
-
a:= n-> Re((4+3*I)^n):
seq(a(n), n=0..24); # Alois P. Heinz, Oct 15 2024
-
Re[(4+3I)^Range[40]] (* or *) LinearRecurrence[{8,-25},{4,7},40] (* Harvey P. Dale, Nov 09 2011 *)
A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
{a, b, c} = {3, 4, 5};
Table[TrigExpand[5^n Cos[n (A[b, c, a] - A[c, a, b])]], {n, 0, 50}] (* Clark Kimberling, Oct 02 2024 *)
A067360
a(n) = 17^n sin(2n arctan(1/4)) or numerator of tan(2n arctan(1/4)).
Original entry on oeis.org
8, 240, 4888, 77280, 905768, 4839120, -116593352, -4896306240, -113193708472, -1980778750800, -26710380775592, -228866364286560, 853309115549288, 91741652745294480, 2505643247965090168, 48655959795562600320, 735547895204966951048
Offset: 1
Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (30, -289).
Cf.
A067361 (17^n cos(2n arctan(1/4))).
-
a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(1/4))
-
Table[Tan[2n ArcTan[1/4]] // TrigToExp // Simplify // Numerator, {n, 1, 17} ] (* Jean-François Alcover, Jul 25 2017 *)
A067361
a(n) = 17^n*cos(2*n*arctan(1/4)) or denominator of tan(2*n*arctan(1/4)).
Original entry on oeis.org
15, 161, 495, -31679, -1093425, -23647519, -393425745, -4968639359, -35359140465, 375162560801, 21473668418415, 535788072480961, 9867752001506895, 141189807098209121, 1383913884510780975, 713562283940993281, -378544244105385903345
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (30, -289).
Cf.
A067360 (17^n sin(2n arctan(1/4))).
-
a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(1/4))
-
Table[t = Tan[2 n ArcTan[1/4]] // TrigToExp // Simplify; Sign[t] * Denominator[t], {n, 1, 17}] (* Jean-François Alcover, Jul 25 2017 *)
A067358
Imaginary part of (5+12i)^n.
Original entry on oeis.org
0, 12, 120, -828, -28560, -145668, 3369960, 58317492, 13651680, -9719139348, -99498527400, 647549275812, 23290743888720, 123471611274972, -2701419604443960, -47880898349909868, -22269070348069440, 7869181117654073292, 82455284065364468280, -505338768229893703548
Offset: 0
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (10,-169).
Cf.
A067359 (13^n cos(2n arctan(2/3))).
-
a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
-
Im[(5 + 12*I)^Range[0, 24]] (* or *)
LinearRecurrence[{10, -169}, {0, 12}, 25] (* Paolo Xausa, Apr 22 2024 *)
-
a(n)=imag((5+12*I)^n)
A067359
Real part of (5 + 12i)^n.
Original entry on oeis.org
1, 5, -119, -2035, -239, 341525, 3455641, -23161315, -815616479, -4241902555, 95420159401, 1671083125805, 584824319281, -276564805068235, -2864483360640839, 18094618450123325, 665043872449535041, 3592448206424508485, -76467932379726337079, -1371803070683005304755
Offset: 1
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
- J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
- E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
- Steven R. Finch, Plouffe's Constant [Broken link]
- Steven R. Finch, Plouffe's Constant [From the Wayback machine]
- Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
- Index entries for linear recurrences with constant coefficients, signature (10, -169).
Cf.
A067358 (13^n sin(2n arctan(2/3))).
-
a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3))
-
Table[Re[(5+12I)^n],{n,0,20}] (* Harvey P. Dale, Aug 24 2014 *)
-
a(n)=real((5+12*I)^n)
A105667
1/(2k)-th of area of primitive Pythagorean triangle with hypotenuse 5^(2^n), where k is the product of all Mersenne primes not exceeding 2^(n+2) - 1.
Original entry on oeis.org
1, 2, 4216, 44834576
Offset: 0
Showing 1-7 of 7 results.
Comments