cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066779 Sum of squarefree numbers <= n.

Original entry on oeis.org

1, 3, 6, 6, 11, 17, 24, 24, 24, 34, 45, 45, 58, 72, 87, 87, 104, 104, 123, 123, 144, 166, 189, 189, 189, 215, 215, 215, 244, 274, 305, 305, 338, 372, 407, 407, 444, 482, 521, 521, 562, 604, 647, 647, 647, 693, 740, 740, 740, 740, 791, 791, 844, 844, 899, 899
Offset: 1

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

References

  • D. Suryanarayana, The number and sum of k-free integers <= x which are prime to n, Indian J. Math., Vol. 11 (1969), pp. 131-139.

Crossrefs

Programs

  • Mathematica
    Table[ n*Boole[ SquareFreeQ[n] ], {n, 1, 56}] // Accumulate (* Jean-François Alcover, Jun 18 2013 *)
  • PARI
    s=0; for (n=1, 1000, write("b066779.txt", n, " ", s+=moebius(n)^2*n) ) \\ Harry J. Smith, Mar 24 2010
    
  • PARI
    a(n)=sum(d=1,sqrtint(n),moebius(d)*d^2*binomial(n\d^2+1,2)) \\ Charles R Greathouse IV, Apr 26 2012
    
  • PARI
    a(n)=my(s,k2); forsquarefree(k=1,sqrtint(n), k2=k[1]^2; s+= k2*binomial(n\k2+1,2)*moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy.ntheory.factor_  import core
    def a(n): return sum ([i for i in range(1, n + 1) if core(i) == i]) # Indranil Ghosh, Apr 16 2017

Formula

a(n) = Sum_{i=1..n} mu(i)^2*i.
a(n) = Sum_{k=1..n} k*A008966(k). - Reinhard Zumkeller, Jul 05 2010
a(n) = Sum_{d=1..sqrt(n)} mu(d)*d^2*floor(n/d^2)*floor(n/d^2+1)/2. - Charles R Greathouse IV, Apr 26 2012
G.f.: Sum_{k>=1} mu(k)^2*k*x^k/(1 - x). - Ilya Gutkovskiy, Apr 16 2017
a(n) ~ (3/Pi^2) * n^2 + O(n^(3/2)) (Suryanarayana, 1969). - Amiram Eldar, Mar 07 2021