A066796 a(n) = Sum_{i=1..n} binomial(2*i,i).
2, 8, 28, 98, 350, 1274, 4706, 17576, 66196, 250952, 956384, 3660540, 14061140, 54177740, 209295260, 810375650, 3143981870, 12219117170, 47564380970, 185410909790, 723668784230, 2827767747950, 11061198475550, 43308802158650
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (Terms 1 to 200 computed by Harry J. Smith; terms 201 to 1000 computed by G. C. Greubel, Jan 15 2017)
- Guo-Shuai Mao, Proof of a conjecture of Adamchuk, arXiv:2003.09810 [math.NT], 2020.
- Guo-Shuai Mao, On a supercongruence conjecture of Z.-W. Sun, arXiv:2003.14221 [math.NT], 2020.
- Guo-Shuai Mao, On some supercongruence conjectures of Z.-W. Sun, Nanjing Univ. Info. Sci. Tech. (China, 2023).
- Guo-Shuai Mao, Proof of some congruences via the hypergeometric identities, Nanjing Univ. Info. Sci. Tech. (China, 2023).
- Guo-Shuai Mao, On two pairs of congruence conjectures of Z.-W. Sun, Nanjing Univ. Sci. Tech. (China), ResearchGate, 2024.
- Guo-Shuai Mao and Roberto Tauraso, Three pairs of congruences concerning sums of central binomial coefficients, arXiv:2004.09155 [math.NT], 2020.
- Guo-Shuai Mao and Dong-Hui Zhang, On some congruences involving harmonic numbers and Bernoulli polynomials, ResearchGate, 2023. See pp. 1-2, 12.
- Z.-W. Sun, Fibonacci numbers modulo cubes of primes, arXiv:0911.3060 [math.NT], 2009-2013; Taiwanese J. Math., to appear 2013. - From _N. J. A. Sloane_, Mar 01 2013
- Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
- Eric Weisstein's World of Mathematics, Binomial Sums.
Crossrefs
Programs
-
Mathematica
Table[Sum[(2k)!/(k!)^2,{k,1,n}],{n,1,50}] (* Alexander Adamchuk, Jul 02 2006 *) Table[Sum[Binomial[2k,k],{k,1,n}],{n,1,30}] (* Alexander Adamchuk, Jan 04 2007 *)
-
PARI
{ a=0; for (n=1, 200, write("b066796.txt", n, " ", a+=binomial(2*n, n)) ) } \\ Harry J. Smith, Mar 27 2010
-
PARI
a(n) = sum(i=1, n, binomial(2*i,i)); \\ Michel Marcus, Jan 04 2016
Formula
a(n) = A006134(n) - 1; generating function: (sqrt(1-4*x)-1)/(sqrt(1-4*x)*(x-1)) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003, corrected by Vaclav Kotesovec, Nov 06 2012
a(n) = Sum_{k=1..n}(2k)!/(k!)^2. - Alexander Adamchuk, Jul 02 2006
a(n) = Sum_{k=1..n}binomial(2k,k). - Alexander Adamchuk, Jan 04 2007
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012
Comments