cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066817 Conjectured values of first prime in the orbit f(m), f(f(m)), ..., where f(n) = A067599(n) and m = n-th composite number; or 0 if none exists.

Original entry on oeis.org

0, 2131, 23, 3224591, 0, 0, 241127117451117479045190960709721125675426733715695733779133596697360781090711425903130196316185995152974660668512820125356019549490226189398938302252287927928254649608061563193945459975102656949618158919173931, 0, 0, 0, 2251, 0, 0, 0, 3224591, 314313643123658229739531, 97211238048939739899395714118873644859466103898031, 0, 46747167851021731, 3224591, 97211238048939739899395714118873644859466103898031, 3141114911731, 5171
Offset: 1

Views

Author

Joseph L. Pe, Feb 01 2002

Keywords

Comments

The terms with 0 value listed above are conjectural. There are no primes < 10^30.
From Sean A. Irvine, Nov 09 2023: (Start)
None of the unresolved cases with n < 50 terminates in a prime < 10^130.
Because the trajectories under f can coalesce certain values are known to be equal even if that value is currently unknown. For example, a(1) = a(13) and a(9) = a(14).
Because of the inclusion of exponents 1 in the concatenation defined by f, terms in the trajectory typically grow quicker than in A195264 or A037274.
(End)

Crossrefs

Programs

  • Mathematica
    (* f returns an array encoding the prime factorization of n *) f[ n_] := Module[ {a, l, i, t = {} }, a = FactorInteger[ n]; l = Length[ a]; For[ i = 1, i <= l, i++, t = Append[ t, a[ [ i]][ [ 1]]]; t = Append[ t, a[ [ i]][ [ 2]]]]; t];
    (* g returns the concatenation of the elements of its input array *) g[ x_] := Module[ {r = "", m = Length[ x], l}, For[ l = 1, l <= m, l++, r = StringJoin[ r, ToString[ x[ [ l]]]]]; r];
    (* h returns an array of the digits of its input int string *) h[ n_] := IntegerDigits[ ToExpression[ n]]
    (* j returns the number formed from the digits in its input array *) j[ x_] := Module[ {r = 0, m = Length[ x], t = x, l}, For[ l = 1, l <= m, l++, r = 10*r + t[ [ 1]]; t = Rest[ t]]; r];
    (* k composes the previous functions *) k[ n_] := j[ h[ g[ f[ n]]]]
    s[ n_] := Module[ {a=n, r=0}, While[ !PrimeQ[ a] && a<10^30, a=k[ a]]; If[ PrimeQ[ a], r=a]; r]; Table[ s[ i], {i, 2, 50}]

Extensions

Offset changed to 1 by Jinyuan Wang, Jul 30 2020
a(7) and a(17) resolved and missing a(21) inserted by Sean A. Irvine, Nov 09 2023