A066843 a(n) = Product_{k=1..n} d(k); d(k) = A000005(k) is the number of positive divisors of k.
1, 1, 2, 4, 12, 24, 96, 192, 768, 2304, 9216, 18432, 110592, 221184, 884736, 3538944, 17694720, 35389440, 212336640, 424673280, 2548039680, 10192158720, 40768634880, 81537269760, 652298158080, 1956894474240, 7827577896960, 31310311587840, 187861869527040
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1310 (terms n = 1..200 from Harry J. Smith)
- Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49
- Mathoverflow, Product of tau(k), 2015.
- Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (10).
Programs
-
Maple
with(numtheory):seq(mul(tau(k),k=1..n), n=0..26); # Zerinvary Lajos, Jan 11 2009 with(numtheory):a[0]:=1: for n from 2 to 26 do a[n]:=a[n-1]*tau(n) od: seq(a[n], n=0..26); # Zerinvary Lajos, Mar 21 2009
-
Mathematica
A066843[n_] := Product[DivisorSigma[0,i], {i,1,n}]; Array[A066843,20] (* Enrique Pérez Herrero, Aug 12 2011 *) FoldList[Times, Array[DivisorSigma[0, #] &, 27]] (* Michael De Vlieger, Nov 01 2017 *)
-
PARI
{ p=1; for (n=1, 200, p*=length(divisors(n)); write("b066843.txt", n, " ", p) ) } \\ Harry J. Smith, Apr 01 2010
Formula
a(n) = Product_{p=primes<=n} Product_{1<=k<=log(n)/log(p)} (1 +1/k)^floor(n/p^k). - Leroy Quet, Mar 20 2007
a(n) = Product_{k=1..n} Product_{p prime<=n} (v_p(k) + 1), where v_p(k) is the exponent of highest power of p dividing k. - Ridouane Oudra, Apr 15 2024
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 19 2023
Comments