cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A355747 Number of multisets that can be obtained by choosing a divisor of each positive integer from 1 to n.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 58, 116, 320, 772, 2170, 4340, 14112, 28224, 78120, 212004, 612232, 1224464, 3873760, 7747520, 24224608, 64595088, 175452168, 350904336
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 10 multisets:
  {}  {1}  {1,1}  {1,1,1}  {1,1,1,1}
           {1,2}  {1,1,2}  {1,1,1,2}
                  {1,1,3}  {1,1,1,3}
                  {1,2,3}  {1,1,1,4}
                           {1,1,2,2}
                           {1,1,2,3}
                           {1,1,2,4}
                           {1,1,3,4}
                           {1,2,2,3}
                           {1,2,3,4}
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
Counting sequences instead of multisets gives A066843.
The integers themselves are the rows of A131818 (shifted).
For prime indices we have A355733, only prime factors A355744.
For prime factors instead of divisors we have A355746, factors A355537.
A000005 counts divisors.
A000040 lists the prime numbers.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Tuples[Divisors/@Range[n]]]],{n,0,10}]
  • Python
    from sympy import divisors
    from itertools import count, islice
    def agen():
        s = {tuple()}
        for n in count(1):
            yield len(s)
            s = set(tuple(sorted(t+(d,))) for t in s for d in divisors(n))
    print(list(islice(agen(), 16))) # Michael S. Branicky, Aug 03 2022

Formula

a(n) = A355733(A070826(n)).
a(p) = 2*a(p-1) for p prime. - Michael S. Branicky, Aug 03 2022

Extensions

a(15)-a(21) from Michael S. Branicky, Aug 03 2022
a(22)-a(23) from Michael S. Branicky, Aug 08 2022

A066780 a(n) = Product_{k=1..n} sigma(k); sigma(k) is the sum of the positive divisors of n.

Original entry on oeis.org

1, 3, 12, 84, 504, 6048, 48384, 725760, 9434880, 169827840, 2037934080, 57062154240, 798870159360, 19172883824640, 460149211791360, 14264625565532160, 256763260179578880, 10013767147003576320, 200275342940071526400, 8411564403483004108800
Offset: 1

Views

Author

Benoit Cloitre and Leroy Quet, Jan 18 2002

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A007429(gcd(i,j)) for 1 <= i,j <= n. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Maple
    with(numtheory):seq(mul(sigma(k),k=1..n), n=1..26); # Zerinvary Lajos, Jan 11 2009
    with(numtheory):a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=a[n-1]*sigma(n) od: seq(a[n], n=0..18); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    A066780[n_] := Product[DivisorSigma[1,i], {i,1,n}]; Array[A066780,20] (* Enrique Pérez Herrero, Aug 12 2011 *)
    FoldList[Times,DivisorSigma[1,Range[20]]] (* Harvey P. Dale, Jan 29 2022 *)
  • PARI
    { p=1; for (n=1, 100, write("b066780.txt", n, " ", p*=sigma(n)) ) } \\ Harry J. Smith, Mar 25 2010

Formula

Lim_{n->infinity} (a(n)^(1/n)) / n = A345144 / exp(1) = 0.57447937538407152396420163967936309825692994713661226083669171312803511135... - Vaclav Kotesovec, Jun 09 2021

A355537 Number of ways to choose a sequence of prime factors, one of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 12288, 12288, 12288, 24576, 49152, 98304, 196608, 196608, 393216, 786432, 1572864, 1572864, 4718592, 4718592, 9437184, 18874368, 37748736
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Comments

Also partial products of A001221 without the first term 0, sum A013939.
For initial terms up to n = 29 we have a(n) = 2^A355538(n). The first non-power of 2 is a(30) = 12288.

Examples

			The a(n) choices for n = 2, 6, 10, 12, with prime(k) replaced by k:
  (1)  (12131)  (121314121)  (12131412151)
       (12132)  (121314123)  (12131412152)
                (121324121)  (12131412351)
                (121324123)  (12131412352)
                             (12132412151)
                             (12132412152)
                             (12132412351)
                             (12132412352)
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The version for divisors instead of prime factors is A066843.
The integers themselves are the rows of A131818.
The version with multiplicity is A327486.
Using prime indices instead of 2..n gives A355741, for multisets A355744.
Counting sequences instead of multisets gives A355746.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Table[Times@@PrimeNu/@Range[2,m],{m,2,30}]

A355538 Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 37, 37, 38, 39, 39, 40, 42, 42, 43, 44, 46, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

For initial terms up to 30 we have a(n) = Log_2 A355537(n).

Crossrefs

The sum of the same range is A000096.
The product of the same range is A000142, Heinz number A070826.
For divisors (not just prime factors) we get A002541, also A006218, A077597.
A shifted variation is A013939.
The unshifted version is A022559, product A327486, w/o multiplicity A355537.
The ranges themselves are the rows of A131818 (shifted).
Partial sums of A297155 (shifted).
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A066843 gives partial sums of A000005.

Programs

  • Mathematica
    Table[Total[(PrimeNu[#]-1)&/@Range[2,n]],{n,1,100}]

Formula

a(n) = A013939(n) - n + 1.

A247951 a(n) = Product_{i=1..n} sigma_2(i).

Original entry on oeis.org

1, 5, 50, 1050, 27300, 1365000, 68250000, 5801250000, 527913750000, 68628787500000, 8372712075000000, 1758269535750000000, 298905821077500000000, 74726455269375000000000, 19428878370037500000000000, 6625247524182787500000000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 01 2014

Keywords

Comments

a(n) is the product of the sum of the squared divisors of i, for i from 1 to n.

Crossrefs

Cf. A000203 (sigma), A001157 (sigma_2), A066780 (product{i=1..n} sigma(i)), A066843, A345158, A345160.

Programs

  • Maple
    with(numtheory): A247951:=n->mul(sigma[2](i),i=1..n): seq(A247951(n), n=1..20);
  • Mathematica
    Table[Product[DivisorSigma[2, i], {i, n}], {n, 20}]
  • PARI
    lista(nn) = vector(nn, n, prod(i=1, n, sigma(i, 2))) \\ Michel Marcus, Oct 01 2014

Formula

a(n) = Product_{i=1..n} A001157(i).
Lim_{n->infinity} (a(n) / (n!)^2)^(1/n) = A345158. - Vaclav Kotesovec, Jun 10 2021

A345144 Product_{p primes, k>=1} ((p^(k+1) - 1)/(p^(k+1) - p))^(1/p^k).

Original entry on oeis.org

1, 5, 6, 1, 5, 9, 6, 8, 4, 6, 9, 3, 1, 0, 2, 4, 1, 6, 4, 3, 2, 6, 9, 6, 7, 8, 8, 9, 1, 4, 4, 5, 5, 5, 6, 4, 4, 3, 6, 4, 7, 3, 7, 6, 4, 6, 8, 2, 2, 2, 3, 2, 1, 6, 9, 9, 4, 5, 8, 6, 6, 4, 5, 7, 0, 9, 6, 8, 3, 5, 7, 8, 4, 9, 4, 9, 0, 9, 5, 3, 9, 8, 8, 9, 4, 2, 4, 4, 3, 0, 1, 0, 8, 6, 8, 0, 9, 1, 0, 3, 2, 1, 4, 3, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 09 2021

Keywords

Examples

			1.561596846931024164326967889144555644364737646822232169945866457...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 500; prod = 1; Do[Clear[f]; f[p_] := ((p^(k + 1) - 1)/(p^(k + 1) - p))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 100]]; Print[prod], {k, 1, 200}]

Formula

Equals exp(1) * lim_{n->infinity} (A066780(n)^(1/n)) / n.

A345160 a(n) = Product_{k=1..n} sigma_3(k).

Original entry on oeis.org

1, 9, 252, 18396, 2317896, 584109792, 200933768448, 117546254542080, 88982514688354560, 100906171656594071040, 134407020646583302625280, 274727950201616270566072320, 603852034543152562704226959360, 1869525898945600334132286666178560
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 10 2021

Keywords

Comments

Partial products of A001158.

Crossrefs

Programs

  • Mathematica
    Table[Product[DivisorSigma[3, k], {k, 1, n}], {n, 1, 20}]
    FoldList[Times,DivisorSigma[3,Range[20]]] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    a(n) = prod(k=1, n, sigma(k, 3)); \\ Michel Marcus, Jun 10 2021

Formula

Lim_{n->infinity} (a(n) / (n!)^3)^(1/n) = A345159.

A364327 Number of endofunctions on [n] such that the number of elements that are mapped to i is either 0 or a divisor of i.

Original entry on oeis.org

1, 1, 3, 13, 115, 851, 13431, 144516, 2782571, 47046307, 1107742273, 19263747713, 657152726011, 13657313316986, 451605697223110, 13377063396461138, 531234399267707419, 14563460779785318719, 721703507708044677945, 22141894282020163910406, 1123287408943765640907425
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: (1).
a(2) = 3: (22), (21), (12).
a(3) = 13: (333), (322), (232), (223), (321), (231), (213), (312), (132), (123), (221), (212), (122).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(
         `if`(d>n, 0, b(n-d, i-1)*binomial(n, d)), d=numtheory[divisors](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);

A146982 Numbers k such that Product{i=1..k}[sigma_0(i)] / k is an integer.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 70, 72, 75, 80, 81, 84, 90, 96, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 150, 160, 162, 168, 175, 180, 189, 192, 196, 200, 210, 216, 224, 225, 240, 243, 245, 250, 252, 256
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 04 2008

Keywords

Comments

A066843(k)/A000027(k) is an integer.

Crossrefs

Programs

  • Magma
    [ n: n in [1..260] | &*[ NumberOfDivisors(k): k in [1..n] ] mod n eq 0 ]; // Klaus Brockhaus, Nov 05 2008
    
  • Mathematica
    With[{nn=300},Select[Thread[{FoldList[Times,DivisorSigma[0,Range[ nn]]], Range[ nn]}], IntegerQ[#[[1]]/#[[2]]]&]][[All,2]] (* Harvey P. Dale, Mar 05 2019 *)
  • PARI
    isok(k) = frac(prod(i=1, k, numdiv(i))/k) == 0; \\ Michel Marcus, Feb 06 2018

Extensions

Extended beyond a(12) by Klaus Brockhaus, Nov 05 2008

A175596 Partial products of A007425.

Original entry on oeis.org

1, 3, 9, 54, 162, 1458, 4374, 43740, 262440, 2361960, 7085880, 127545840, 382637520, 3443737680, 30993639120, 464904586800, 1394713760400, 25104847687200, 75314543061600, 1355661775108800, 12200955975979200, 109808603783812800, 329425811351438400, 9882774340543152000, 59296646043258912000, 533669814389330208000, 5336698143893302080000, 96060566590079437440000, 288181699770238312320000, 7780905893796434432640000
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2010

Keywords

Comments

Partial products of the number of ordered factorizations of n as a product of 3 terms.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_4(gcd(i,j)) for 1 <= i,j <= n, where d_4(n) = A007426(n). - Enrique Pérez Herrero, Jan 20 2013

Examples

			a(8) = 1 * 3 * 3 * 6 * 3 * 9 * 3 * 10 = 43740 = 2^2 * 3^7 * 5.
		

Crossrefs

Cf. A000005, A007425, A007426, A061201 (partial sums), A127270, A143354.
Cf. A066843.

Programs

  • Mathematica
    Table[Product[Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 03 2018 *)
  • PARI
    f(n) = sumdiv(n, k, numdiv(k)); \\ A007425
    a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 23 2021

Formula

a(n) = Product_{i=1..n} A007425(i).
a(n) = Product_{prime p<=n} Product_{k=1..floor(log_p(n))} (1 + 2/k)^floor(n/p^k). - Ridouane Oudra, Mar 23 2021
Showing 1-10 of 19 results. Next