cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A066986 Integers of the form (Product_{i=1..k} sigma(i))/(Product_{i=1..k} phi(i)) = A066780(k)/A001088(k).

Original entry on oeis.org

1, 3, 6, 21, 189, 252, 945, 361179, 1083537
Offset: 1

Views

Author

Benoit Cloitre, Jan 27 2002

Keywords

Comments

If next term exists, it will be too large to be included.
A066780(k)/A001088(k) is an integer for k = 1, 2, 3, 4, 6, 7, 8, 14, 15, ... Is there such a k greater than 10^5 ? - Jinyuan Wang, Apr 06 2020

Crossrefs

A066843 a(n) = Product_{k=1..n} d(k); d(k) = A000005(k) is the number of positive divisors of k.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 96, 192, 768, 2304, 9216, 18432, 110592, 221184, 884736, 3538944, 17694720, 35389440, 212336640, 424673280, 2548039680, 10192158720, 40768634880, 81537269760, 652298158080, 1956894474240, 7827577896960, 31310311587840, 187861869527040
Offset: 0

Views

Author

Leroy Quet, Jan 20 2002

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_3(gcd(i,j)) for 1 <= i,j <= n, where d_3(n) is A007425. - Enrique Pérez Herrero, Aug 12 2011
a(n) is the number of integer sequences of length n where a(m) divides m for every term. - Franklin T. Adams-Watters, Oct 29 2017

Crossrefs

Programs

  • Maple
    with(numtheory):seq(mul(tau(k),k=1..n), n=0..26); # Zerinvary Lajos, Jan 11 2009
    with(numtheory):a[0]:=1: for n from 2 to 26 do a[n]:=a[n-1]*tau(n) od: seq(a[n], n=0..26); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    A066843[n_] := Product[DivisorSigma[0,i], {i,1,n}]; Array[A066843,20] (* Enrique Pérez Herrero, Aug 12 2011 *)
    FoldList[Times, Array[DivisorSigma[0, #] &, 27]] (* Michael De Vlieger, Nov 01 2017 *)
  • PARI
    { p=1; for (n=1, 200, p*=length(divisors(n)); write("b066843.txt", n, " ", p) ) } \\ Harry J. Smith, Apr 01 2010

Formula

a(n) = Product_{p=primes<=n} Product_{1<=k<=log(n)/log(p)} (1 +1/k)^floor(n/p^k). - Leroy Quet, Mar 20 2007
a(n) = Product_{k=1..n} Product_{p prime<=n} (v_p(k) + 1), where v_p(k) is the exponent of highest power of p dividing k. - Ridouane Oudra, Apr 15 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 19 2023

A247951 a(n) = Product_{i=1..n} sigma_2(i).

Original entry on oeis.org

1, 5, 50, 1050, 27300, 1365000, 68250000, 5801250000, 527913750000, 68628787500000, 8372712075000000, 1758269535750000000, 298905821077500000000, 74726455269375000000000, 19428878370037500000000000, 6625247524182787500000000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 01 2014

Keywords

Comments

a(n) is the product of the sum of the squared divisors of i, for i from 1 to n.

Crossrefs

Cf. A000203 (sigma), A001157 (sigma_2), A066780 (product{i=1..n} sigma(i)), A066843, A345158, A345160.

Programs

  • Maple
    with(numtheory): A247951:=n->mul(sigma[2](i),i=1..n): seq(A247951(n), n=1..20);
  • Mathematica
    Table[Product[DivisorSigma[2, i], {i, n}], {n, 20}]
  • PARI
    lista(nn) = vector(nn, n, prod(i=1, n, sigma(i, 2))) \\ Michel Marcus, Oct 01 2014

Formula

a(n) = Product_{i=1..n} A001157(i).
Lim_{n->infinity} (a(n) / (n!)^2)^(1/n) = A345158. - Vaclav Kotesovec, Jun 10 2021

A345144 Product_{p primes, k>=1} ((p^(k+1) - 1)/(p^(k+1) - p))^(1/p^k).

Original entry on oeis.org

1, 5, 6, 1, 5, 9, 6, 8, 4, 6, 9, 3, 1, 0, 2, 4, 1, 6, 4, 3, 2, 6, 9, 6, 7, 8, 8, 9, 1, 4, 4, 5, 5, 5, 6, 4, 4, 3, 6, 4, 7, 3, 7, 6, 4, 6, 8, 2, 2, 2, 3, 2, 1, 6, 9, 9, 4, 5, 8, 6, 6, 4, 5, 7, 0, 9, 6, 8, 3, 5, 7, 8, 4, 9, 4, 9, 0, 9, 5, 3, 9, 8, 8, 9, 4, 2, 4, 4, 3, 0, 1, 0, 8, 6, 8, 0, 9, 1, 0, 3, 2, 1, 4, 3, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 09 2021

Keywords

Examples

			1.561596846931024164326967889144555644364737646822232169945866457...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 500; prod = 1; Do[Clear[f]; f[p_] := ((p^(k + 1) - 1)/(p^(k + 1) - p))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 100]]; Print[prod], {k, 1, 200}]

Formula

Equals exp(1) * lim_{n->infinity} (A066780(n)^(1/n)) / n.

A345160 a(n) = Product_{k=1..n} sigma_3(k).

Original entry on oeis.org

1, 9, 252, 18396, 2317896, 584109792, 200933768448, 117546254542080, 88982514688354560, 100906171656594071040, 134407020646583302625280, 274727950201616270566072320, 603852034543152562704226959360, 1869525898945600334132286666178560
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 10 2021

Keywords

Comments

Partial products of A001158.

Crossrefs

Programs

  • Mathematica
    Table[Product[DivisorSigma[3, k], {k, 1, n}], {n, 1, 20}]
    FoldList[Times,DivisorSigma[3,Range[20]]] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    a(n) = prod(k=1, n, sigma(k, 3)); \\ Michel Marcus, Jun 10 2021

Formula

Lim_{n->infinity} (a(n) / (n!)^3)^(1/n) = A345159.

A294343 E.g.f.: exp( Sum_{n>=1} ( Product_{k=1..n} sigma(k) ) * x^n/n! ).

Original entry on oeis.org

1, 1, 4, 22, 178, 1570, 18808, 230980, 3505468, 57144700, 1068295600, 20546428360, 461887088728, 10502814172696, 264754450444576, 7060121052388720, 204307337026984720, 6046890989734627600, 195299794016884735552, 6449005971683059906144, 228860773033625810367520, 8414329938572105578573600, 325809232939269347815692160, 12955190762780437329737296960, 547586316827523026196832913344
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2017

Keywords

Comments

Compare e.g.f. to exp( Sum_{n>=1} sigma(n) * x^n/n ) = Product_{n>=1} 1/(1 - x^n).

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 22*x^3/3! + 178*x^4/4! + 1570*x^5/5! + 18808*x^6/6! + 230980*x^7/7! + 3505468*x^8/8! + 57144700*x^9/9! + 1068295600*x^10/10! + 20546428360*x^11/11! + 461887088728*x^12/12! + 10502814172696*x^13/13! + 264754450444576*x^14/14! + 7060121052388720*x^15/15! + 204307337026984720*x^16/16! +...
such that
log(A(x)) = 1*x + 1*3*x^2/2! + 1*3*4*x^3/3! + 1*3*4*7*x^4/4! + 1*3*4*7*6*x^5/5! + 1*3*4*7*6*12*x^6/6! + 1*3*4*7*6*12*8*x^7/7! + 1*3*4*7*6*12*8*15*x^8/8! + 1*3*4*7*6*12*8*15*13*x^9/9! + 1*3*4*7*6*12*8*15*13*18*x^10/10! +...+ (Product_{k=1..n} sigma(k))*x^n/n! +...
explicitly,
log(A(x)) = x + 3*x^2/2! + 12*x^3/3! + 84*x^4/4! + 504*x^5/5! + 6048*x^6/6! + 48384*x^7/7! + 725760*x^8/8! + 9434880*x^9/9! + 169827840*x^10/10! + 2037934080*x^11/11! + 57062154240*x^12/12! +...+ A066780(n)*x^n/n! +...
		

Crossrefs

Cf. A066780.

Programs

  • PARI
    {a(n) = n!*polcoeff( exp( sum(m=1,n+1, prod(k=1,m, sigma(k)) * x^m/m!) +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

A067577 a(n) = Product_{i=1..n} sigma(i) * Sum_{i=1..n} 1/sigma(i).

Original entry on oeis.org

1, 4, 19, 145, 954, 11952, 101664, 1573344, 21179232, 390661056, 4857760512, 138055228416, 1989835352064, 48554918608896, 1184490930438144, 37179368055373824, 683493250562260992, 26913000032107757568, 548273767789158727680, 23227773590084738088960, 751700319286194622955520
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2002

Keywords

Crossrefs

Cf. A000203 (sigma), A066780, A212717, A212718.

Programs

  • Mathematica
    Array[Product[DivisorSigma[1, i], {i, #}]*Sum[1/DivisorSigma[1, j], {j, #}] &, 21] (* Michael De Vlieger, Jul 16 2022 *)
  • PARI
    a(n) = prod(i=1, n, sigma(i)) * sum(i=1, n, 1/sigma(i)); \\ Michel Marcus, Jan 09 2021

Extensions

More terms from Michel Marcus, Jan 09 2021

A109361 a(n) = Product_{k=1..n} sigma(k)/d(k), where sigma(k) = Sum_{j|k} j and d(k) = Sum_{j|k} 1. Set a(n) = 0 if the corresponding product is not an integer (e.g., for n=2 and n=10).

Original entry on oeis.org

1, 0, 3, 7, 21, 63, 252, 945, 4095, 0, 110565, 515970, 3611790, 21670740, 130024440, 806151528, 7255363752, 47159864388, 471598643880, 3301190507160, 26409524057280, 237685716515520, 2852228598186240, 21391714486396800
Offset: 1

Views

Author

Leroy Quet, Aug 22 2005

Keywords

Comments

The product at n = 2 is the noninteger 1.5. The product at n = 10 is the noninteger 18427.5. Jack Brennen's observed that the only values which are not integers occur when n = 2 or 10, for n < 5000. Are all products for n >= 11 integers?
No other nonintegers found up to 200000. - Michel Marcus, Sep 14 2015
No other nonintegers up to 3000000. - Robert Israel, Jan 22 2018

Examples

			a(4) = 1 * 3 * 4 * 7 /(1 * 2 * 2 * 3) = 7.
		

Crossrefs

Programs

  • Maple
    p:= 1: A[1]:= 1:
    for n from 2 to 50 do
      p:= p * numtheory:-sigma(n)/numtheory:-tau(n);
      if p::integer then A[n]:= p else A[n]:= 0 fi
    od:
    seq(A[n],n=1..50); # Robert Israel, Jan 22 2018
  • Mathematica
    Table[If[IntegerQ[Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}]], Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}], 0], {n, 1, 30}] (* Stefan Steinerberger, Oct 24 2007 *)
  • PARI
    a(n) = my(q = prod(k=1, n, sigma(k)/numdiv(k))); if (denominator(q)==1, q, 0); \\ Michel Marcus, Sep 14 2015

Formula

Product_{k=1..n} sigma(k)/d(k) = Product_{p=primes} Product_{k>=1} ((p^(k+1)-1)*k/((p^k -1)(k+1)))^floor(n/p^k).
a(n) = A066780(n)/A066843(n) if this is an integer, else 0. - Michel Marcus, Sep 14 2015

Extensions

More terms from Stefan Steinerberger, Oct 24 2007
Showing 1-8 of 8 results.