A066986 Integers of the form (Product_{i=1..k} sigma(i))/(Product_{i=1..k} phi(i)) = A066780(k)/A001088(k).
1, 3, 6, 21, 189, 252, 945, 361179, 1083537
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
with(numtheory):seq(mul(tau(k),k=1..n), n=0..26); # Zerinvary Lajos, Jan 11 2009 with(numtheory):a[0]:=1: for n from 2 to 26 do a[n]:=a[n-1]*tau(n) od: seq(a[n], n=0..26); # Zerinvary Lajos, Mar 21 2009
A066843[n_] := Product[DivisorSigma[0,i], {i,1,n}]; Array[A066843,20] (* Enrique Pérez Herrero, Aug 12 2011 *) FoldList[Times, Array[DivisorSigma[0, #] &, 27]] (* Michael De Vlieger, Nov 01 2017 *)
{ p=1; for (n=1, 200, p*=length(divisors(n)); write("b066843.txt", n, " ", p) ) } \\ Harry J. Smith, Apr 01 2010
with(numtheory): A247951:=n->mul(sigma[2](i),i=1..n): seq(A247951(n), n=1..20);
Table[Product[DivisorSigma[2, i], {i, n}], {n, 20}]
lista(nn) = vector(nn, n, prod(i=1, n, sigma(i, 2))) \\ Michel Marcus, Oct 01 2014
1.561596846931024164326967889144555644364737646822232169945866457...
$MaxExtraPrecision = 1000; m = 500; prod = 1; Do[Clear[f]; f[p_] := ((p^(k + 1) - 1)/(p^(k + 1) - p))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 100]]; Print[prod], {k, 1, 200}]
Table[Product[DivisorSigma[3, k], {k, 1, n}], {n, 1, 20}] FoldList[Times,DivisorSigma[3,Range[20]]] (* Harvey P. Dale, Sep 18 2023 *)
a(n) = prod(k=1, n, sigma(k, 3)); \\ Michel Marcus, Jun 10 2021
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 22*x^3/3! + 178*x^4/4! + 1570*x^5/5! + 18808*x^6/6! + 230980*x^7/7! + 3505468*x^8/8! + 57144700*x^9/9! + 1068295600*x^10/10! + 20546428360*x^11/11! + 461887088728*x^12/12! + 10502814172696*x^13/13! + 264754450444576*x^14/14! + 7060121052388720*x^15/15! + 204307337026984720*x^16/16! +... such that log(A(x)) = 1*x + 1*3*x^2/2! + 1*3*4*x^3/3! + 1*3*4*7*x^4/4! + 1*3*4*7*6*x^5/5! + 1*3*4*7*6*12*x^6/6! + 1*3*4*7*6*12*8*x^7/7! + 1*3*4*7*6*12*8*15*x^8/8! + 1*3*4*7*6*12*8*15*13*x^9/9! + 1*3*4*7*6*12*8*15*13*18*x^10/10! +...+ (Product_{k=1..n} sigma(k))*x^n/n! +... explicitly, log(A(x)) = x + 3*x^2/2! + 12*x^3/3! + 84*x^4/4! + 504*x^5/5! + 6048*x^6/6! + 48384*x^7/7! + 725760*x^8/8! + 9434880*x^9/9! + 169827840*x^10/10! + 2037934080*x^11/11! + 57062154240*x^12/12! +...+ A066780(n)*x^n/n! +...
{a(n) = n!*polcoeff( exp( sum(m=1,n+1, prod(k=1,m, sigma(k)) * x^m/m!) +x*O(x^n)),n)} for(n=0,30,print1(a(n),", "))
Array[Product[DivisorSigma[1, i], {i, #}]*Sum[1/DivisorSigma[1, j], {j, #}] &, 21] (* Michael De Vlieger, Jul 16 2022 *)
a(n) = prod(i=1, n, sigma(i)) * sum(i=1, n, 1/sigma(i)); \\ Michel Marcus, Jan 09 2021
a(4) = 1 * 3 * 4 * 7 /(1 * 2 * 2 * 3) = 7.
p:= 1: A[1]:= 1: for n from 2 to 50 do p:= p * numtheory:-sigma(n)/numtheory:-tau(n); if p::integer then A[n]:= p else A[n]:= 0 fi od: seq(A[n],n=1..50); # Robert Israel, Jan 22 2018
Table[If[IntegerQ[Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}]], Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}], 0], {n, 1, 30}] (* Stefan Steinerberger, Oct 24 2007 *)
a(n) = my(q = prod(k=1, n, sigma(k)/numdiv(k))); if (denominator(q)==1, q, 0); \\ Michel Marcus, Sep 14 2015
Comments