cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066862 Numbers k such that k divides Sum_{i=1..k} gcd(k,i) = A018804(k).

Original entry on oeis.org

1, 4, 15, 16, 27, 48, 60, 64, 108, 144, 240, 256, 325, 432, 729, 891, 960, 1008, 1024, 1200, 1280, 1296, 1300, 1728, 1875, 2916, 3072, 3125, 3564, 3645, 3840, 3888, 4095, 4096, 5200, 6000, 6237, 6375, 6400, 6912, 7056, 7500, 8775, 9216, 11520, 11664, 12500
Offset: 1

Views

Author

Benoit Cloitre, Jan 25 2002

Keywords

Comments

Also k such that Sum_{d|k} phi(d)/d is an integer. - Benoit Cloitre, Apr 14 2002
If two coprime numbers are terms then their product is as well, because Pillai's function A018804(n) is multiplicative. - Thomas Ordowski, Oct 28 2014
The first six squarefree terms are 1, 15=3*5, 1488251=19*29*37*73, 4464753=3*19*29*37*73, 7441255=5*19*29*37*73 and 22323765=3*5*19*29*37*73. Are there any others? - Michel Marcus and Thomas Ordowski, Nov 01 2014

Crossrefs

Cf. A018804.

Programs

  • Maple
    A066862:=n->`if`(add(gcd(n,i), i=1..n) mod n = 0, n, NULL):
    seq(A066862(n), n=1..500); # Wesley Ivan Hurt, Oct 28 2014
  • Mathematica
    a066862[n_Integer] := Select[Range[n], Divisible[Sum[GCD[#, i], {i, 1, #}], #] &]; a066862[12500] (* Michael De Vlieger, Nov 23 2014 *)
    f[p_, e_] := (e*(p - 1)/p + 1); r[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[12500], IntegerQ[r[#]] &] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    isok(n) = sum(i=1,n,gcd(n,i)) % n == 0; \\ Michel Marcus, Nov 20 2013
    
  • PARI
    A018804(n)=my(f=factor(n)); prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2])
    is(n)=A018804(n)%n==0 \\ Charles R Greathouse IV, Oct 28 2014

Formula

If n = 4^k with k >= 0, n is in the sequence.
If p is prime and k >= 0 then n = p^(kp) is in the sequence. - Thomas Ordowski, Oct 28 2014

Extensions

More terms from Michel Marcus, Nov 20 2013