A066862 Numbers k such that k divides Sum_{i=1..k} gcd(k,i) = A018804(k).
1, 4, 15, 16, 27, 48, 60, 64, 108, 144, 240, 256, 325, 432, 729, 891, 960, 1008, 1024, 1200, 1280, 1296, 1300, 1728, 1875, 2916, 3072, 3125, 3564, 3645, 3840, 3888, 4095, 4096, 5200, 6000, 6237, 6375, 6400, 6912, 7056, 7500, 8775, 9216, 11520, 11664, 12500
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..3287
- László Tóth, A survey of gcd-sum functions, J. Int. Seq., Vol. 13 (2010), Article 10.8.1.
Crossrefs
Cf. A018804.
Programs
-
Maple
A066862:=n->`if`(add(gcd(n,i), i=1..n) mod n = 0, n, NULL): seq(A066862(n), n=1..500); # Wesley Ivan Hurt, Oct 28 2014
-
Mathematica
a066862[n_Integer] := Select[Range[n], Divisible[Sum[GCD[#, i], {i, 1, #}], #] &]; a066862[12500] (* Michael De Vlieger, Nov 23 2014 *) f[p_, e_] := (e*(p - 1)/p + 1); r[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[12500], IntegerQ[r[#]] &] (* Amiram Eldar, Apr 09 2022 *)
-
PARI
isok(n) = sum(i=1,n,gcd(n,i)) % n == 0; \\ Michel Marcus, Nov 20 2013
-
PARI
A018804(n)=my(f=factor(n)); prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2]) is(n)=A018804(n)%n==0 \\ Charles R Greathouse IV, Oct 28 2014
Formula
If n = 4^k with k >= 0, n is in the sequence.
If p is prime and k >= 0 then n = p^(kp) is in the sequence. - Thomas Ordowski, Oct 28 2014
Extensions
More terms from Michel Marcus, Nov 20 2013
Comments