cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066898 Total number of even parts in all partitions of n.

Original entry on oeis.org

0, 1, 1, 4, 5, 11, 15, 28, 38, 62, 85, 131, 177, 258, 346, 489, 648, 890, 1168, 1572, 2042, 2699, 3475, 4532, 5783, 7446, 9430, 12017, 15106, 19073, 23815, 29827, 37011, 46012, 56765, 70116, 86033, 105627, 128962, 157476, 191359, 232499, 281286, 340180, 409871
Offset: 1

Views

Author

Naohiro Nomoto, Jan 24 2002

Keywords

Comments

Also sum of all even-indexed parts minus the sum of all odd-indexed parts, except the largest parts, of all partitions of n (cf. A206563). - Omar E. Pol, Feb 14 2012
From Omar E. Pol, Apr 06 2023: (Start)
Convolution of A000041 and A183063.
Convolution of A002865 and A362059.
a(n) is also the total number of even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)

Examples

			a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
		

Crossrefs

Programs

  • Haskell
    a066898 = p 0 1 where
       p e _             0 = e
       p e k m | m < k     = 0
               | otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
    -- Reinhard Zumkeller, Mar 09 2012
    
  • Haskell
    a066898 = length . filter even . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
  • Maple
    g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # Emeric Deutsch, Feb 17 2006
    A066898 := proc(n)
        add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;
    end proc: # R. J. Mathar, Jun 18 2016
  • Mathematica
    f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
    o[n_] := Sum[f[n, i], {i, 1, n, 2}]
    e[n_] := Sum[f[n, i], {i, 2, n, 2}]
    Table[o[n], {n, 1, 45}]  (* A066897 *)
    Table[e[n], {n, 1, 45}]  (* A066898 *)
    %% - %                   (* A209423 *)
    (* Clark Kimberling, Mar 08 2012 *)
    a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=1..floor(n/2)} tau(k)*numbpart(n-2*k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k=0..floor(n/2)} k*A116482(n,k). - Emeric Deutsch, Feb 17 2006
G.f.: (Sum_{j>=1} x^(2*j)/(1-x^(2*j)))/(Product_{j>=1} (1-x^j)). - Emeric Deutsch, Feb 17 2006
a(n) = A066897(n) - A209423(n) = A006128(n) - A066897(n). - Reinhard Zumkeller, Mar 09 2012
a(n) = (A006128(n) - A209423(n))/2. - Vaclav Kotesovec, May 25 2018
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 26 2002