A066898 Total number of even parts in all partitions of n.
0, 1, 1, 4, 5, 11, 15, 28, 38, 62, 85, 131, 177, 258, 346, 489, 648, 890, 1168, 1572, 2042, 2699, 3475, 4532, 5783, 7446, 9430, 12017, 15106, 19073, 23815, 29827, 37011, 46012, 56765, 70116, 86033, 105627, 128962, 157476, 191359, 232499, 281286, 340180, 409871
Offset: 1
Examples
a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
- P. J. Grabner and A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
Crossrefs
Programs
-
Haskell
a066898 = p 0 1 where p e _ 0 = e p e k m | m < k = 0 | otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m -- Reinhard Zumkeller, Mar 09 2012
-
Haskell
a066898 = length . filter even . concat . ps 1 where ps _ 0 = [[]] ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)] -- Reinhard Zumkeller, Jul 13 2013
-
Maple
g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # Emeric Deutsch, Feb 17 2006 A066898 := proc(n) add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ; end proc: # R. J. Mathar, Jun 18 2016
-
Mathematica
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i] o[n_] := Sum[f[n, i], {i, 1, n, 2}] e[n_] := Sum[f[n, i], {i, 2, n, 2}] Table[o[n], {n, 1, 45}] (* A066897 *) Table[e[n], {n, 1, 45}] (* A066898 *) %% - % (* A209423 *) (* Clark Kimberling, Mar 08 2012 *) a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)
Formula
a(n) = Sum_{k=1..floor(n/2)} tau(k)*numbpart(n-2*k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k=0..floor(n/2)} k*A116482(n,k). - Emeric Deutsch, Feb 17 2006
G.f.: (Sum_{j>=1} x^(2*j)/(1-x^(2*j)))/(Product_{j>=1} (1-x^j)). - Emeric Deutsch, Feb 17 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018
Extensions
More terms from Vladeta Jovovic, Jan 26 2002
Comments