cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067046 a(n) = lcm(n, n+1, n+2)/6.

Original entry on oeis.org

1, 2, 10, 10, 35, 28, 84, 60, 165, 110, 286, 182, 455, 280, 680, 408, 969, 570, 1330, 770, 1771, 1012, 2300, 1300, 2925, 1638, 3654, 2030, 4495, 2480, 5456, 2992, 6545, 3570, 7770, 4218, 9139, 4940, 10660, 5740, 12341, 6622, 14190, 7590, 16215, 8648, 18424, 9800
Offset: 1

Views

Author

Amarnath Murthy, Dec 30 2001

Keywords

Examples

			a(6) = 28 as lcm(6,7,8)/6 = 168/6 = 28.
		

Crossrefs

Cf. A000447 (bisection), A006331 (bisection), A033931.

Programs

Formula

G.f.: (x^4 + 2x^3 + 6x^2 + 2x + 1)/(1 - x^2)^4.
a(n) = binomial(n+2,3)*(3-(-1)^n)/4. - Gary Detlefs, Apr 13 2011
Quasipolynomial: a(n) = n(n+1)(n+2)/6 when n is odd and n(n+1)(n+2)/12 otherwise. - Charles R Greathouse IV, Feb 27 2012
a(n) = A033931(n) / 6. - Reinhard Zumkeller, Jul 04 2012
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*(1 - log(2)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(3*log(2) - 2). (End)